Columbia (rieka)

Columbia
rieka
Mosto ponad rieku Columbia, ktorý spája mestá Hood River a White Salmon.
Prezývka: Big River, the River of the West, River Oregon[1]
Štáty USA USA,  Kanada Kanada
Fed. štáty Washington, Oregon
Prítoky
 - ľavostranné Spillimacheen River, Beaver River, Illecillewaet River, Incomappleux River, Kootenay River, Pend Oreille River, Spokane River, Snake River, John Day River, Deschutes River, Willamette River
 - pravostranné Kicking Horse River, Blaeberry River, Canoe River, Kettle River, Sanpoil River, Okanogan River, Wenatchee River, Yakima River, Lewis River, Kalama River, Cowlitz River
Mestá Revelstoke, Tri-Cities, Portland, Vancouver, Longview
Prameň Columbia Lake
 - výška 808 m
 - súradnice 50°13′S 115°51′Z / 50,217°S 115,850°Z / 50.217; -115.850
Ústie Tichý oceán
 - výška m
 - súradnice 46°14′39″S 124°3′29″Z / 46,24417°S 124,05806°Z / 46.24417; -124.05806
Dĺžka 2 000 km
Povodie 668 217 km² (66 821 700 ha)
Prietok
 - priemerný 7 504 /s
 - maximálny 35 100 /s
 - minimálny 300 /s
Poloha rieky na mape
Poloha rieky na mape
Wikimedia Commons: Columbia River
Portál, ktorého súčasťou je táto stránka:

Columbia (angl. Columbia River) je rieka v Kanade a Spojených štátoch amerických. Vyteká z jazera Columbia a ústi do Tichého oceánu.

Iné projekty

Referencie

  1. HOLBROOK, Stewart. The Columbia: The Classic Portrait of the Great River of the Northwest. [s.l.] : Comstock Editions, 1956. ISBN 0-89174-123-4 Chybné ISBN. (po anglicky)


Read other articles:

Brown Ideye Informasi pribadiNama lengkap Aide Brown Ideye[1]Tanggal lahir 10 Oktober 1988 (umur 35)Tempat lahir Lagos, NigeriaTinggi 1,80 m (5 ft 11 in)Posisi bermain ForwardInformasi klubKlub saat ini Tianjin TedaNomor 39Karier junior Bayelsa UnitedKarier senior*Tahun Tim Tampil (Gol)2006–2007 Ocean Boys 5 (1)2008–2010 Neuchâtel Xamax 55 (23)2010–2011 Sochaux 52 (17)2011–2014 Dynamo Kyiv 74 (33)2014–2015 West Bromwich Albion 24 (4)2015–2017 Olympiac...

 

4th edition of the Miss Grand Japan beauty pageant Miss Grand Japan 2018DateJuly 30, 2018VenueWOMB Club, Shibuya, TokyoEntrants15Placements5WinnerHaruka Oda (Saitama)CongenialityHonami Nishikawa (Chiba)Best in SwimsuitMariko Nakagawa (Chiba)← 20172019 → Miss Grand Japan 2018 (Japanese: 2018 ミス・グランド・ジャパン) was the 4th edition of the Miss Grand Japan pageant, held on July 30, 2018,[1][2][3] at the WOMB Club, Shibuya, Tokyo. ...

 

Misi diplomatik Britania Raya Berikut ini adalah daftar misi diplomatik Kerajaan Britania Raya dan Irlandia Utara, tidak termasuk konsulat kehormatan. Britania Raya memiliki salah satu jaringan misi diplomatik global terbesar di dunia. Misi diplomatik Britania Raya ke ibu kota negara anggota negara-negara persemakmuran lainnya dinamakan Komisi Tinggi Britania (dipimpin oleh seorang 'Komisaris Tinggi'). Foreign and Commonwealth Office (FCO) masih menggunakan istilah Deputy High Commission untu...

We Can Make It!Lagu oleh Arashidari album TimeSisi-BDi-Li-LiDirilis02 Mei 2007 (2007-05-02)FormatCDGenrePopLabelJ StormJACA-5059 (Edisi Terbatas)JACA-5060 (Edisi Normal)Kronologi singel Love So Sweet (2007) We Can Make It! (2007) Happiness (2007) We Can Make It! adalah single ke-19 boyband Jepang Arashi. Single ini dirilis dalam 2 edisi: satu edisi regular yang berisi versi karaoke dari seluruh lagu yang termasuk dalam single, dan yang satunya edisi terbatas yang berisi sebuah bonus trek...

 

Il caso Allemandi è stato uno dei principali scandali della storia del calcio italiano, nonché uno dei primi in ordine di tempo, essendo avvenuto nel periodo antecedente all'istituzione della Serie A a girone unico (1929).[1][2] Il caso, alquanto complesso e caratterizzato da retroscena che non furono mai ben chiariti, comportò la revoca dello scudetto vinto dal Torino nella stagione 1926-1927. L'esito controverso del caso giudiziario portò, nei decenni seguenti, a diversi...

 

Questa voce o sezione sull'argomento politici statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. George Maxwell Robeson 26° Segretario della marina statunitenseDurata mandato26 giugno 1869 - 4 marzo 1877 PredecessoreAdolph Edward Borie SuccessoreRichard Wigginton Thompson Dati generaliPart...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Polish composer, violinist, and pedagogue (1835–1880) Henryk WieniawskiPhotograph by Fritz LuckhardtBorn(1835-07-10)10 July 1835Lublin, Congress PolandDied31 March 1880(1880-03-31) (aged 44)Moscow, Russian EmpireOccupationsComposerviolinistEraRomanticism Henryk Wieniawski (pronounced [vʲɛˈɲafskʲi] ⓘ; 10 July 1835 – 31 March 1880) was a Polish virtuoso violinist, composer and pedagogue, who is regarded amongst the most distinguished violinists in history.&#...

 

Pour les articles homonymes, voir Joyeuse. Épée de CharlemagneÉpée de Charlemagne, dite Joyeuse, et son fourreau.Artiste InconnuDate Xe – XIe siècleType ÉpéeLieu de création Île-de-FranceDimensions (H × L) 100,5 × 22,6 cmPropriétaire État FrançaisNo d’inventaire MS 84[1]Localisation Musée du Louvre, Département des objets d'art, Paris (France)modifier - modifier le code - modifier Wikidata Joyeuse est, d'une part, l'épée légendaire...

British politician (born 1985) The subject of this article is standing for re-election to the House of Commons of the United Kingdom on 4 July, and has not been an incumbent MP since Parliament was dissolved on 30 May. Some parts of this article may be out of date during this period. Please feel free to improve this article (but note that updates without valid and reliable references will be removed) or discuss changes on the talk page. The Right HonourableRichard HoldenOfficial por...

 

Polygon with an infinite number of sides For the novel, see Apeirogon (novel). The regular apeirogonEdges and vertices∞Schläfli symbol{∞}Coxeter–Dynkin diagramsInternal angle (degrees)180°Dual polygonSelf-dual A partition of the Euclidean line into infinitely many equal-length segments can be understood as a regular apeirogon. In geometry, an apeirogon (from Ancient Greek ἄπειρος apeiros 'infinite, boundless', and γωνία gonia 'angle') or infini...

 

Canadian cryptologic agency Not to be confused with the Canadian Security Intelligence Service (CSIS). Communications Security EstablishmentBadge of the CSE[1]CSE wordmarkAgency overviewFormed1946Preceding agencyExamination Unit, a civilian organization established in 1941, by the National Research CouncilTypegovernment agency responsible for cyber security and information assurance foreign intelligence defensive and active cyber operations technical and operational assistance Headqua...

World War II barges This article may require copy editing for random capitalization throughout. You can assist by editing it. (November 2023) (Learn how and when to remove this message) US Navy Water Barge, YW-59, launched August 29, 1941, in Norfolk Naval Shipyard, later stationed in Naval Base Trinidad[1] The Type B ship is a United States Maritime Administration (MARAD) designation for World War II barges. Barges are very low cost to build, operate and move. Barges were needed to m...

 

What I have written, I have written, Pontius Pilate, Gospel of John (19:22) Christ on the Cross, by Francisco de Zurbarán, 1627. Pilate's superscription is nailed to the cross above Jesus. Quod scripsi, scripsi (Latin for What I have written, I have written) is a Latin phrase. It was most famously used by Pontius Pilate in the Bible in response to the Jewish priests who objected to his writing King of the Jews on the sign (titulus) that was hung above Jesus at his Crucifixion. It is mostly f...

 

Dutch politician Roos VermeijMember of the House of RepresentativesIn office30 November 2006 – 23 March 2017 Personal detailsBorn (1968-03-28) 28 March 1968 (age 56)The HagueNationalityDutchPolitical partyLabour PartyOccupationPolitician Rosemarijn Agnes (Roos) Vermeij (born March 28, 1968, in The Hague) is a Dutch politician. As a member of the Labour Party (Partij van de Arbeid) she was an MP between November 30, 2006, and March 23, 2017.[1] She focused on matters of...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري التركي الدرجة الأولى 2015–16 تفاصيل الموسم دوري الدرجة الأولى التركي  النسخة 15  البلد تركيا ...

 

Italian football manager (born 1965) Stefano Pioli Pioli managing Lazio in 2015Personal informationFull name Stefano Pioli[1]Date of birth (1965-10-20) 20 October 1965 (age 58)[2]Place of birth Parma, ItalyHeight 1.85 m (6 ft 1 in)Position(s) DefenderYouth career1979–1982 ParmaSenior career*Years Team Apps (Gls)1982–1984 Parma 42 (1)1984–1987 Juventus 35 (0)1987–1989 Hellas Verona 42 (0)1989–1995 Fiorentina 154 (1)1995–1996 Padova 4 (0)1996–19...

 

First Census of New France 1666; 358 years ago (1666) 1667 → General informationCountryNew France, Kingdom of FranceWebsitestatcan.gc.caResultsTotal population3,215Most populous ​settlementMontreal (625)Least populous ​settlementLauzon [fr] (13) The 1666 census of New France was the first census conducted in Canada (and also North America) for the Kingdom of France. It was organized by Jean Talon, the first Intendant of...

Phan Đình TrạcChức vụỦy viên Bộ Chính trị khóa XIIINhiệm kỳ31 tháng 1 năm 2021 – nay3 năm, 197 ngàyTổng Bí thưNguyễn Phú Trọng Bí thư Trung ương Đảng khóa XII, XIIINhiệm kỳ6 tháng 10 năm 2017 – nay6 năm, 314 ngàyTổng Bí thưNguyễn Phú TrọngThường trực Ban Bí thưTrần Quốc Vượng Võ Văn ThưởngTrương Thị MaiLương Cường Trưởng ban Nội chính Trung ươngNhi...

 

Artikel ini bukan mengenai Angka bulat. Bilangan bulat dapat dianggap sebagai titik-titik diskret yang berjarak sama sepanjang garis bilangan. Pada gambar ini, bilangan-bilangan bulat positif ditandai dengan warna hijau dan bilangan-bilangan bulat negatif dengan warna biru. Bilangan bulat adalah bilangan yang dapat dituliskan tanpa komponen desimal atau pecahan. Sebagai contoh, 21, 4, 0, -3, -67 dan -2048 merupakan bilangan bulat, sedangkan 9,75 , 5 12 , dan 5 {\displaystyle {\sqrt {5}}}...