С геометрической точки зрения, модуль вещественного или комплексного числа есть расстояние между числом и началом координат. В математике широко используется тот факт, что геометрически величина означает расстояние между точками и и, таким образом, может быть использована как мера близости одной (вещественной или комплексной) величины к другой — например, в определении предела по Коши или медианы[2].
Считают, что термин предложил использовать Котс, ученик Ньютона. Лейбниц тоже использовал эту функцию, которую называл модулем и обозначал: mol. Общепринятое обозначение абсолютной величины введено в 1841 году Вейерштрассом. Для комплексных чисел это понятие ввели Коши и Арган в начале XIX века.
В языках программирования
Поскольку эта функция вычисляется достаточно просто (а именно с помощью сравнений и присваиваний), то обычно она входит в стандартный список функций во все языки программирования. Например, в Pascal есть функция abs(x), а в C fabs(x) для вещественного типа. В программе Wolfram Mathematica: Abs[x].
Обобщением понятия модуля можно считать норму элемента многомерного векторного пространства, обозначаемую . Норма вектора в евклидовом пространстве иногда тоже называется модулем. По аналогии с модулем разности чисел, норма разности двух векторов является мерой близости между ними. В отличие от модуля числа, норма вектора может определяться различными способами, однако в случае одномерного пространства норма вектора пропорциональна (часто и равна) модулю его единственной координаты.