Неофициальное название для иррационального числа, которое в виде десятичной дроби имеет в дробной части повторяющиеся последовательности цифр, придающие ему сходство с рациональным числом. Шизофреническое число можно получить следующим образом. Для любого натурального числа n пусть f (n) обозначает целое число, заданное рекуррентной формулой f (n) = 10 f (n — 1) + n с начальным значением f (0) = 0. Таким образом, f (1) = 1 , f (2) = 12, f (3) = 123 и т. д. В этом случае квадратные корни f (n) для нечётных целых чисел n будут иметь значения, сначала содержащие периодические последовательности цифр, характерные для рациональных чисел, но затем переходящие в иррациональные. Например, последовательность из первых 500 цифр √f (49) выглядит так:
Видно, что повторяющиеся последовательности цифр становятся всё короче, а длина «неупорядоченных» последовательностей цифр увеличивается до тех пор, пока повторяющиеся последовательности не исчезают вообще. При этом, увеличивая n, можно «задавать» появление повторяющихся последовательностей цифр сколь угодно долго. В последовательности всегда фигурируют цифры 1, 5, 6, 2, 4, 9, 6, 3, 9, 2, ….
Оригинальный текст (англ.):
An informal name for an irrational number that displays such persistent patterns in its decimal expansion, that it has the appearance of a rational number. A schizophrenic number can be obtained as follows. For any positive integer n let f(n) denote the integer given by the recurrence f(n) = 10 f(n − 1) + n with the initial value f(0) = 0. Thus, f(1) = 1, f(2) = 12, f(3) = 123, and so on. The square roots of f(n) for odd integers n give rise to a curious mixture appearing to be rational for periods, and then disintegrating into irrationality. This is illustrated by the first 500 digits of √f(49):
The repeating strings become progressively shorter and the scrambled strings become larger until eventually the repeating strings disappear. However, by increasing n we can forestall the disappearance of the repeating strings as long as we like. The repeating digits are always 1, 5, 6, 2, 4, 9, 6, 3, 9, 2,....[1]
Последовательность чисел, порождённых рекуррентной формулой f (n) = 10 f (n — 1) + n, описанной выше, выглядит так:
Целые части их квадратных корней — соответственно:
0, 1, 3, 11, 35, 111, 351, 1111, 3513, 11111, 35136, 111111, 351364, 1111111, … (последовательность A068995 в OEIS), содержат как числа с повторяющимися последовательностями цифр, так и числа с «неупорядоченным» набором цифр, аналогично чередованию цифр в дробных частях значений квадратных корней.
История
По оценке американского писателя и популяризатора науки Клиффорда Пиковера[англ.], шизофренические числа были обнаружены Кевином Брауном.
В своей книге «Чудеса чисел» Пиковер так описал историю шизофренических чисел[2]:
Построение и открытие шизофренических чисел было вызвано требованием (опубликованным в Usenet newsgroup sci.math), чтобы иррациональное число, выбранное случайным образом, не содержало бы в первых 100 знаках повторяющихся последовательностей цифр. Было отмечено, что если бы такая последовательность была найдена, это стало бы неопровержимым доказательством существования Бога или внеземного разума. (Иррациональное число — это любое число, которое не может быть выражено как отношение двух целых чисел. Трансцендентные числа, такие как e и π, и другие, такие как квадратный корень из 2, являются иррациональными).