Уравнение состояния

Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др.[1] Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы[2]. Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики[3]. В рамках термодинамики уравнения состояния считают заданными при определении системы[4]. Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут иметь весьма сложный вид.

О терминологии

Из множества уравнений состояния выделяются:

Простейшая термодеформационная система — газ в цилиндре с поршнем. Всё, что за пределами окрашенного жёлтым пространства, — внешняя среда

В русскоязычной учебной литературе получила распространение более узкая трактовка понятий «термические уравнения состояния» и «калорическое уравнение состояния», позволяющая за счёт потери общности заметно упростить изложение рассматриваемого вопроса. А именно, в узком смысле под термическим уравнением состояния понимают зависимость обобщённой силы или химического потенциала от температуры , обобщённых координат и масс составляющих веществ [3][10]:

(выражение есть сокращение для перечисления переменных определённого типа, в данном случае — обобщённых координат). В узком смысле под калорическим уравнением состояния понимают зависимость от температуры и других первичных термических величин внутренней энергии [3]:

или энтальпии [17][18].

Общее число уравнений состояния (все термические плюс калорическое) термодинамической системы при таком подходе равно числу термодинамических степеней свободы системы, то есть числу независимых переменных, характеризующих состояние системы, а их полный набор необходим и достаточен для исчерпывающего описания термодинамических свойств системы[3].

Далее — если иное не оговорено особо — для большей наглядности речь будет идти об однородных закрытых термодеформационных системах в статическом (локальноравновесном) состоянии. Вариантность такой системы равна двум[3] (см. Правило Дюгема) и для её полного описания — помимо калорического уравнения состояния — требуется единственное термическое уравнение состояния. Простейшим примером такой системы служит газ в цилиндре с поршнем.

Термическое уравнение состояния

Термическое уравнение состояния (ТУС, термин введён Х. Камерлинг-Оннесом[19][20]) для закрытой термодеформационной системы связывает между собой её давление, объём и температуру; его общий вид можно записать так[21]:

Или же так:

Таким образом, чтобы задать термическое уравнение состояния необходимо конкретизировать вид функции .

Для идеального газа (как классического, так и квазиклассического) его термическое уравнение состояния известно как уравнение Клапейрона (уравнение Клапейрона — Менделеева)[14][22][23]:

где  — универсальная газовая постоянная,  — масса газа,  — его молярная масса.

Для фотонного газа его давление зависит только от температуры, а термическое уравнение состояния выглядит так[24][25]:

где a — радиационная постоянная.

Для макроскопических объектов, требующих от термодинамики учёта их магнитных и электрических свойств, термические уравнения состояния имеют следующий вид[1][26][27]:

где  — намагниченность вещества,  — напряжённость магнитного поля,  — поляризованность вещества,  — напряжённость электрического поля.

Для упругого стержня (из изотропного материала) длиной L, на который действует сила F, направленная вдоль стержня, термическое уравнение состояния выглядит так[28]:

Термические коэффициенты

Выражая одну из переменных в термическом уравнении состояния через две другие, для простой[29] закрытой системы в зависимости от выбора независимых переменных термическое уравнение состояния можно записать тремя способами[21][30]:

Запишем эти уравнения в дифференциальной форме[31]:

В приведённые уравнения входят шесть частных производных, которые попарно обратны друг другу:

поэтому самостоятельное значение имеют только три из них. В качестве основных обычно выбирают производные

и

которые называют термическими коэффициентами[31][32]. Название отражает связь этих коэффициентов с термическим уравнением состояния.

Из математического анализа известно, что для любой неявно заданной функции трёх переменных

справедливо соотношение[33][34]

или[35]

то есть любой из трёх термических коэффициентов можно выразить через два других. Это соотношение иногда называют термическим уравнением состояния в дифференциальной форме[36][37][38].

На практике используют не сами частные производные, а образованные из них коэффициенты[39](также называемые термическими коэффициентами[40][41][34], либо же термодинамическими коэффициентами[42][43]):

изобарный коэффициент термического расширения

характеризующий скорость изменения объёма при изменении температуры в условиях постоянного давления (для идеального газа [44][37]);

термический коэффициент давления при постоянном объёме

характеризующий скорость изменения давления при изменении температуры в условиях постоянного объёма (для идеального газа [44][37]);

изотермический коэффициент всестороннего сжатия

характеризующий скорость изменения объёма при изменении давления в условиях постоянной температуры (для идеального газа [45][46]). Знак минус указывает на уменьшение объёма с повышением давления и нужен для того, чтобы избежать отрицательных значений коэффициента сжимаемости[47][48].

Из термического уравнения состояния в дифференциальной форме вытекает уравнение связи между коэффициентами объёмного расширения, упругости и сжатия[33]:

Это соотношение позволяет, например, найти коэффициент для твёрдых и жидких тел (которые практически невозможно нагреть или охладить без изменения их объёма) по определяемым опытным путём коэффициентам и [49].

Термические коэффициенты являются функциями объёма, давления и температуры. Практическое значение коэффициентов объёмного расширения, упругости и сжатия состоит в том, что они используются для вычисления тех термодинамических величин, которые затруднительно или невозможно определить экспериментально.

Калорическое уравнение состояния

Если в термическое уравнение состояния в качестве обязательной переменной (зависимой или независимой) входит температура, то калорическое уравнение состояния (КУС) для простой закрытой системы отражает зависимость внутренней энергии от термодинамических параметров состояния (температуры и объёма, температуры и давления, объёма и давления)[50][51] (авторство термина КУС принадлежит Х. Камерлинг-Оннесу)[19]:

Калорические коэффициенты

Калорические коэффициенты вводят способом, аналогичным способу введения термических коэффициентов. Запишем калорическое уравнение состояния с независимыми переменными и в дифференциальной форме[40]:

и посредством входящих в это соотношение частных производных введём первую пару калорических коэффициентов — теплоёмкость при постоянном объёме[52][53]

и теплоту изотермического расширения[52][53]

имеющую размерность давления. Применявшееся ранее для этого калорического коэффициента название скрытая теплота расширения как пережиток теории теплорода к использованию не рекомендуется[52].

Для идеального газа теплоёмкость при постоянном объёме равна[54]: для одноатомных, для двухатомных и для многоатомных газов. Здесь  — масса газа,  — молярная масса этого газа,  — универсальная газовая постоянная. Теплота изотермического расширения идеального газа [55][56].

Частная производная

носит название внутреннего давления и к калорическим коэффициентам не относится, хотя и вводится одновременно с ними. Численное значение этой величины (отражающей на молекулярном уровне взаимное притяжение частиц), мало для реальных газов и очень велико (по сравнению с обычными значениями внешнего давления) для жидкостей и твёрдых тел[52]. Для идеального газа то есть внутренняя энергия идеального газа не зависит от объёма (закон Джоуля)[57][58].

Введём вторую пару калорических коэффициентов, связанных с калорическим уравнением состояния с независимыми переменными и  — теплоёмкость при постоянном давлении[59]

и теплоту изотермического возрастания давления[59]

В литературе эти калорические коэффициенты чаще приводят в более компактном и удобном для расчётов виде, используя энтальпию или энтропию [60]:

Для идеального газа и связаны формулой Майера. Коэффициент в подавляющем большинстве случаев есть величина отрицательная; для идеального газа [55][61]. Применявшееся ранее для этого калорического коэффициента название скрытая теплота изменения давления к использованию не рекомендуется.

Приведём определения для последней пары калорических коэффициентов, связанных с калорическим уравнением состояния с независимыми переменными и [36] — теплоты изохорного сжатия

и теплоты изобарного расширения

Четыре из шести введённых калорических коэффициентов ( и ), имея самостоятельный физический смысл, являются полезными вспомогательными величинами при выводе термодинамических соотношений и в термодинамических расчётах, в частности, при вычислении внутренней энергии, энтальпии и энтропии. Коэффициенты и в настоящее время вышли из употребления[62].

Связь между термическими и калорическими коэффициентами

Полезные соотношения, связывающие термические и калорические коэффициенты[63][58][64]:

Для идеального газа

Каноническое уравнение состояния

Основная статья: Термодинамические потенциалы.

Каноническое уравнение представляет собой выражение для одного из термодинамических потенциалов (внутренней энергии, энтальпии, свободной энергии или потенциала Гиббса) через независимые переменные, относительно которых записывается его полный дифференциал.

  • (для внутренней энергии),
  • (для энтальпии),
  • (для энергии Гельмгольца),
  • (для потенциала Гиббса).

Каноническое уравнение, независимо от того, в каком из этих четырёх видов оно представлено, содержит полную информацию о термических и калорических свойствах термодинамической системы (предполагается, что известно и определение термодинамического потенциала, такое, как F = U − TS).

Уравнения состояния газов

К уравнениям состояния газов относятся:

Уравнения состояния жидкостей

Уравнения состояния твёрдых тел

Состояние твёрдых тел можно описать с помощью уравнения Ми — Грюнайзена

См. также

Примечания

  1. 1 2 Рудой Ю. Г., Уравнение состояния, 2017, с. 39—40 https://old.bigenc.ru/physics/text/4700430.
  2. 1 2 Сивухин Д. В., Общий курс физики, т. 2, 2005, с. 136—137.
  3. 1 2 3 4 5 6 Базаров И. П., Термодинамика, 2010, с. 30.
  4. Кубо Р., Термодинамика, 1970, с. 24—25.
  5. Münster A., Classical Thermodynamics, 1970, p. 69.
  6. Мюнстер, 1971, с. 92.
  7. Запишем фундаментальное уравнение Гиббса в энергетическом выражении для однородной термодинамической системы:

    где  — экстенсивные величины (термодинамические координаты состояния). Сопряжённые с ними интенсивные величины (термодинамические потенциалы взаимодействия) есть

    Любое из соотношений

    представляет собой уравнение состояния. Уравнения состояния не являются независимыми друг от друга, так как входящие в них интенсивные величины связаны соотношением, дифференциальная форма которого называется уравнением Гиббса — Дюгема:

    Для однокомпонентной термодинамической фазы имеем ( — внутренняя энергия,  — температура,  — энтропия,  — давление,  — объём,  — химический потенциал компонента,  — масса компонента):
    энергетическое выражение фундаментального уравнения Гиббса в интегральной форме

    ;

    энергетическое выражение фундаментального уравнения Гиббса в дифференциальной форме

    ;

    уравнения состояния

    ;
    ;
    ;

    уравнение Гиббса — Дюгема

    .
  8. Münster A., Classical Thermodynamics, 1970, p. 72.
  9. Мюнстер, 1971, с. 96.
  10. 1 2 Куранов, 1998, с. 39—40.
  11. 1 2 Маляренко В. А. и др., Техническая теплофизика, 2001, с. 12.
  12. 1 2 Белов Г. В., Термодинамика, ч. 1, 2017, с. 248.
  13. Александров А. А., Термодинамические основы циклов теплоэнергетических установок, 2016, с. 17.
  14. 1 2 Барилович, Смирнов, 2014, с. 12.
  15. 1 2 Гуйго, 1984, с. 111.
  16. Бурсиан В. Р., Соколов П. Т., Лекции по термодинамике, 1934, с. 176.
  17. Барилович, Смирнов, 2014, с. 13.
  18. Гуйго, 1984, с. 112.
  19. 1 2 Бурдаков В. П. и др., Термодинамика, ч. 1, 2009, с. 34.
  20. Кубо Р., Термодинамика, 1970, с. 158.
  21. 1 2 Белов Г. В., Термодинамика, ч. 1, 2017, с. 32.
  22. Базаров И. П., Термодинамика, 2010, с. 65.
  23. Василевский, 2006, с. 41.
  24. Гуггенгейм, Современная термодинамика, 1941, с. 166.
  25. Сычёв, 2009, с. 212.
  26. Зубарев Д. Н., Уравнение состояния, 1998, с. 236.
  27. Базаров И. П., Термодинамика, 2010, с. 308.
  28. Сычёв, 2009, с. 225.
  29. Состояние простой термодинамической системы (газы и изотропные жидкости в ситуации, когда поверхностными эффектами и наличием внешних силовых полей можно пренебречь) полностью задано её объёмом, давлением в системе и массами составляющих систему веществ.
  30. Мурзаков, 1973, с. 15–16, 86.
  31. 1 2 Мурзаков, 1973, с. 86–87.
  32. Бахшиева, 2008, с. 63.
  33. 1 2 Мурзаков, 1973, с. 88.
  34. 1 2 Глазов, 1981, с. 10.
  35. Сивухин Д. В., Общий курс физики, т. 2, 2005, с. 36.
  36. 1 2 Глазов, 1981, с. 40.
  37. 1 2 3 Бахшиева, 2008, с. 28.
  38. Коган В. Е. и др., Физическая химия, 2013, с. 24.
  39. Мурзаков, 1973, с. 87–88.
  40. 1 2 Герасимов Я. И. и др., Курс физической химии, т. 1, 1970, с. 38.
  41. Карапетьянц М. Х., Химическая термодинамика, 1975, с. 110.
  42. Путилов К. А., Термодинамика, 1971, с. 108.
  43. Базаров И. П., Термодинамика, 2010, с. 33.
  44. 1 2 Путилов К. А., Термодинамика, 1971, с. 109.
  45. Эпштейн П. С., Курс термодинамики, 1948, с. 18.
  46. Сивухин Д. В., Общий курс физики, т. 2, 2005, с. 295.
  47. Щелкачев В. Н., Лапук Б. Б., Подземная гидравлика, 1949, с. 44.
  48. Пыхачев Г. Б., Исаев Р. Г., Подземная гидравлика, 1973, с. 47.
  49. Коновалов, 2005, с. 31.
  50. Мурзаков, 1973, с. 18.
  51. Базаров И. П., Термодинамика, 2010, с. 30.
  52. 1 2 3 4 Герасимов Я. И. и др., Курс физической химии, т. 1, 1970, с. 39.
  53. 1 2 Глазов, 1981, с. 38.
  54. Кубо Р., Термодинамика, 1970, с. 25.
  55. 1 2 Глазов, 1981, с. 41.
  56. Базаров И. П., Термодинамика, 2010, с. 42.
  57. Глазов, 1981, с. 146.
  58. 1 2 Базаров И. П., Термодинамика, 2010, с. 65.
  59. 1 2 Колесников И. М., Термодинамика физико-химических процессов, 1994, с. 48.
  60. Полторак, 1991, с. 27, 58–60.
  61. Полторак, 1991, с. 60.
  62. Полторак, 1991, с. 27.
  63. Глазов, 1981, с. 40, 114, 146.
  64. Николаев Г. П., Лойко А. Э., Техническая термодинамика, 2013, с. 41.
  65. Партингтон Дж. Р., Раковский А. В., Курс химической термодинамики, 1932, с. 41.
  66. Толпыго К. Б., Термодинамика и статистическая физика, 1966, с. 83, 95.

Литература

  • Münster A. Classical Thermodynamics. — London e. a.: Wiley-Interscience, 1970. — xiv + 387 p. — ISBN 0 471 62430 6.
  • Александров А. А. Термодинамические основы циклов теплоэнергетических установок. — М.: Издательский дом МЭИ, 2016. — 159 с. — ISBN 978-5-383-00961-1.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. — 2-е изд., испр. — М.: Едиториал УРСС, 2003. — 120 с. — ISBN 5-354-00391-1.
  • Базаров И. П. Термодинамика (недоступная ссылка). — М.: Высшая школа, 1991. — 376 с.
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.— Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
  • Барилович B. A., Смирнов Ю. А. Основы технической термодинамики и теории тепло- и массообмена. — М.: ИНФРА-М, 2014. — 432 с. — (Высшее образование: Бакалавриат). — ISBN 978-5-16-005771-2.
  • Бахшиева Л. Т. и др. Техническая термодинамика и теплотехника / Под ред. проф А. А. Захаровой. — 2-е изд., испр. — М.: Академия, 2008. — 272 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-4999-1.
  • Белов Г. В. Термодинамика. Часть 1. — 2-е изд., испр. и доп. — М.: Юрайт, 2017. — 265 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-02731-0.
  • Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 112 с.
  • Бурдаков В. П., Дзюбенко Б. В., Меснянкин С. Ю., Михайлова Т. В. Термодинамика. Часть 1. Основной курс. — М.: Дрофа, 2009. — 480 с. — (Высшее образование. Современный учебник). — ISBN 978-5-358-06031-9.
  • Бурдаков В. П., Дзюбенко Б. В., Меснянкин С. Ю., Михайлова Т. В. Термодинамика. Часть 2. Специальный курс. — М.: Дрофа, 2009. — 362 с. — (Высшее образование. Современный учебник). — ISBN 978-5-358-06140-8.
  • Бурсиан В. Р., Соколов П. Т. Лекции по термодинамике. — Л.: Кубуч, 1934. — 352 с.
  • Василевский А. С. Термодинамика и статистическая физика. — 2-е изд., перераб.. — М.: Дрофа, 2006. — 240 с. — ISBN 5-7107-9408-2.
  • Герасимов Я. И., Древинг В. П., Еремин Е. Н. и др. Курс физической химии / Под общ. ред. Я. И. Герасимова. — 2-е изд. — М.: Химия, 1970. — Т. I. — 592 с.
  • Глазов В. М. Основы физической химии. — М.: Высшая школа, 1981. — 456 с.
  • Гуйго Э. И., Данилова Г. Н., Филаткин В. Н. и др. Техническая термодинамика / Под общ. ред. проф. Э. И. Гуйго. — Л.: Изд-во Ленингр. ун-та, 1984. — 296 с.
  • Гуггенгейм. Современная термодинамика, изложенная по методу У. Гиббса / Пер. под ред. проф. С. А. Щукарева. — Л.—М.: Госхимиздат, 1941. — 188 с.
  • Зубарев Д. Н. Уравнение состояния // Физическая энциклопедия. — Большая Российская энциклопедия, 1998. — Т. 5: Стробоскопические приборы — Яркость. — С. 236.
  • Карапетьянц М. Х. Химическая термодинамика. — М.: Химия, 1975. — 584 с.
  • Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — 2-е изд., сущ. перераб. и доп. — М.: Едиториал УРСС, 2002. — 240 с. — ISBN 5-354-00077-7.
  • Коган В. Е., Литвинова Т. Е., Чиркст Д. Э., Шахпаронова Т. С. Физическая химия / Науч. ред. проф. Д. Э. Чиркст. — СПб.: Национальный минерально-сырьевой ун-т «Горный», 2013. — 450 с.
  • Колесников И. М. Термодинамика физико-химических процессов. — М.: Гос. акад. нефти и газа им. И. М. Губкина, 1994. — 288 с.
  • Колесников И. М. Термодинамика физико-химических процессов. — М.: Нефть и Газ, 2005. — 480 с. — ISBN 5-7246-0351-9.
  • Коновалов В. И. Техническая термодинамика. — Иваново: Иван. гос. энерг. ун-т, 2005. — 620 с. — ISBN 5-89482-360-9.
  • Кубо Р. Термодинамика. — М.: Мир, 1970. — 304 с.
  • Кудрявцева И. В., Рыков А. В., Рыков В. А.[1]Непараметрическое уравнение состояния скейлингового вида и метод псевдокритических точек. — СПб. — Научный журнал НИУ ИТМО.- Статья. — УДК 536.71
  • Куранов Г. Л. Уравнения состояния // Химическая энциклопедия. — Большая Российская энциклопедия, 1998. — Т. 5: Триптофан — Ятрохимия. — С. 39—40.
  • Маляренко В. А., Редько А. Ф., Чайка Ю. И., Поволочко В. Б. Техническая теплофизика ограждающих конструкций зданий и сооружений. — Харьков: Рубикон, 2001. — 280 с. — ISBN 966-7152-47-2.
  • Мурзаков В. В. Основы технической термодинамики. — М.: Энергия, 1973. — 304 с.
  • Мюнстер А. Химическая термодинамика / Пер. с нем. под. ред. чл.-корр. АН СССР Я. И. Герасимова. — М.: Мир, 1971. — 296 с.
  • Николаев Г. П., Лойко А. Э. Техническая термодинамика. — Екатеринбург: УрФУ, 2013. — 227 с.
  • Партингтон Дж. Р., Раковский А. В. [libgen.io/book/index.php?md5=7e1f282c5a99198778a5d15a18a6018b Курс химической термодинамики] / Пер. с англ. Я. В. Герасимова, проработка и дополнения проф. А. В. Раковского. — 2-е изд., стереотипное. — М.Л.: Госхимтехиздат, 1932. — 383 с.
  • Полторак О. М. Термодинамика в физической химии. — М.: Высшая школа, 1991. — 320 с. — ISBN 5-06-002041-X.
  • Путилов К. А. Термодинамика / Отв. ред. М. Х. Карапетьянц. — М.: Наука, 1971. — 376 с.
  • Пыхачев Г. Б., Исаев Р. Г. Подземная гидравлика. — М.: Недра, 1973. — 360 с.
  • Рыков С. В., Кудрявцева И. В., Рыков А. В., Курова Л. В. Метод построения фундаментального уравнения состояния, учитывающего особенности критической области. — СПб. — Научный журнал НИУ ИТМО.- Статья. — УДК 536.71
  • Рудой Ю. Г. Уравнение состояния // Большая российская энциклопедия. — Большая Российская энциклопедия (издательство), 2017. — Т. 33. — С. 65.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. — 5-е изд., испр. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
  • Сычёв В. В. Сложные термодинамические системы. — 5-е изд., перераб. и доп. — М.: Издательский дом МЭИ, 2009. — 296 с. — ISBN 978-5-383-00418-0.
  • Толпыго К. Б. [www.libgen.io/book/index.php?md5=9D8053F983EF1E982792F381F436A461 Термодинамика и статистическая физика]. — Киев: Изд-во Киевского ун-та, 1966. — 364 с. (недоступная ссылка)
  • Щелкачев В. Н., Лапук Б. Б. Подземная гидравлика / Под общ. ред. акад. Л. С. Лейбензона. — М. — Л: Гостоптехиздат, 1949. — 524 с.
  • Эпштейн П.С. Курс термодинамики / Пер.с англ. Н. М.Лозинской, Н. А.Толстого.. — ОГИЗ. — М., 1948. — 420 с.

Read other articles:

  هذه المقالة عن اللغات التي يتكلم بها سكان قارة أوروبا وليس جزيرة أروبا في البحر الكاريبي. لمعانٍ أخرى، طالع لغات أروبا. اللغات المتكلمة في أوروبا أغلبها من العائلة اللغوية الهندية الأوروبية أو الفينية الأوغرية.[1] أيضًا اللغات تركية موجودة بكثرة في أوروبا. توزع ا...

 

Village in Estonia Village in Harju County, EstoniaKersaluVillageCountry EstoniaCountyHarju CountyParishLääne-Harju ParishTime zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Kersalu is a village in Lääne-Harju Parish, Harju County in northern Estonia.[1] References ^ X-GIS(4) Portal. xgis.maaamet.ee. Retrieved 24 July 2021. 59°20′N 24°11′E / 59.333°N 24.183°E / 59.333; 24.183 vteSettlements in Lääne-Harju ParishTown Paldiski Small bor...

 

Stasiun Echigo-Tanaka越後田中駅Stasiun Echigo-Tanaka di April 2010LokasiKamigō-Ueda, Tsunan-machi, Nakauonuma-gun, Niigata-ken 949-8200JapanKoordinat37°00′19″N 138°37′38″E / 37.0052°N 138.6272°E / 37.0052; 138.6272Koordinat: 37°00′19″N 138°37′38″E / 37.0052°N 138.6272°E / 37.0052; 138.6272Operator JR EastJalur■ Iiyama LineLetak55.9 kilometer dari ToyonoJumlah peron1 Peron SisiJumlah jalur1Informasi lainStatusUnsta...

Lambang Nusa Tenggara TimurDetailPerisaiBerbentuk perisai lima sudut yang terdapat gambar bintang, komodo, padi, kapas, tombak dan pohon beringin. Prangko Lambang Provinsi Nusa Tenggara Timur Lambang Nusa Tenggara Timur berbentuk perisai dengan lima sudut yang memiliki arti perlindungan rakyat, juga berarti lima sila Pancasila. Dalam perisai tergambar bintang, Komodo, padi, kapas, tombak dan pohon beringin. Bintang melambangkan keagungan Tuhan Yang Maha Esa. Komodo dalam lambang adalah satu-s...

 

American lawyer For the English sculptor, see George Frampton. George T. Frampton Jr.Chair of the Council on Environmental QualityIn office1998–2001PresidentBill ClintonPreceded byKathleen McGintySucceeded byJames L. ConnaughtonAssistant Secretary for Fish and Wildlife and ParksIn officeDecember 10, 1993 – October 10, 1996PresidentBill ClintonSucceeded byHarold Craig MansonPresident of the Wilderness SocietyIn office1989–1993 Personal detailsBornGeorge Thomas Frampton Jr. (1944...

 

Alessandro Albani. Alessandro Albani (Urbino, 15 Oktober 1692 – Roma, 11 Desember 1779) merupakan seorang kardinal Gereja Katolik Roma berkebangsaan Italia. Ia terkenal karena dedikasinya pada seni, melindungi dan mendukung kebangkitan neoklasik. Bacaan selanjutnya Debenedetti, ed., Alessandro Albani, patrono delle arti ... = Studi sul Settecento Romano; 9 (1993) Catatan Pranala luar Cardinals of the Holy Roman Church: Alessandro Albani Casino of the Villa Albani Cardinal Albani and the Vil...

2001 film by Toshiya Shinohara This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Inuyasha the Movie: Affections Touching Across Time – news · newspapers · books · scholar · JSTOR (March 2014) (Learn how and when to remove this message) Inuyasha the Movie: Affections Touching Across TimeJapanese theatrical rele...

 

Map of the Bulgarian regions by Human Development Index in 2021 Legend:   >0.800  0.775 – 0.800  0.750 – 0.775 This is a list of NUTS2 statistical regions of Bulgaria by Human Development Index as of 2021.[1] Rank Region HDI (2021) Very high human development 1 Yugozapaden 0.860 High human development –  Bulgaria 0.795 2 Severoiztochen 0.790 3 Yuzhen Tsentralen 0.788 4 Severen Tsentralen 0.786 5 Yugoiztochen 0.773 6 Severozapaden 0.759 Refer...

 

Foto para anggota Komisi 5 Golongan (Komisi Kecil). Sebuah komisi yang diberi tugas oleh Komisi 10 Golongan (Komisi Besar) untuk menyusun pedoman penulisan aksara Jawa. Pedoman tersebut dikenal sebagai Wewaton Sriwedari.[1] Kongres Aksara Jawa (bahasa Jawa: Konggrès Aksara Jawa atau disingkat KAJ) adalah kegiatan yang diselenggarakan untuk membahas perkembangan, pelestarian, dan permasalahan cara penulisan aksara Jawa. Kongres aksara Jawa pertama kali digelar di Sriwedari, Surakarta ...

Duke of Lancaster's Own YeomanryCap badgeActive1798–presentCountry Kingdom of Great Britain (1798–1800) United Kingdom (1801–present)Branch British ArmyTypeYeomanrySize1–3 RegimentsSquadron (current)Part ofRoyal Armoured CorpsEngagementsSecond Boer WarFirst World War France and Flanders 1915–18 Second World War Italy 1943–45 North-West Europe 1944–45 Battle honoursSee battle honours belowCommandersHonorary ColonelLieutenant Colonel The Hon. Ralph C. Ass...

 

Velocity of an object as the rate of distance change between the object and a point Radial speed redirects here. Not to be confused with radial motion. A plane flying past a radar station: the plane's velocity vector (red) is the sum of the radial velocity (green) and the tangential velocity (blue). The radial velocity or line-of-sight velocity of a target with respect to an observer is the rate of change of the vector displacement between the two points. It is formulated as the vector projec...

 

صغير حمود أحمد عزيز معلومات شخصية الميلاد 1967العمشية، مديرية حرف سفيان، محافظة عمران الإقامة اليمن الجنسية اليمن  اليمن منصب رئيس هيئة الأركان العامة بداية 28 فبراير 2020 الحياة العملية المهنة قائد عسكري وسياسي يمني الحزب المؤتمر الشعبي العام الخدمة العسكرية الولاء  ا�...

Norwegian politician Liv Signe NavarseteCounty Governor of VestlandIncumbentAssumed office 1 September 2022MonarchHarald VPrime MinisterJonas Gahr StørePreceded byLars SponheimLeader of the Centre PartyIn office12 September 2008 – 7 April 2014First DeputyLars Peder Brekk Ola Borten MoeSecond DeputyTrygve Slagsvold VedumPreceded byÅslaug HagaSucceeded byTrygve Slagsvold VedumParliamentary Leader of the Centre PartyIn office16 October 2013 – 9 April 2014LeaderHerself...

 

Public health issue of violent acts against women Part of a series onViolence against women Killing Bride burning Dowry death Honor killing Femicide Infanticide Matricide Pregnant women Sati Sororicide Uxoricide Sexual assault and rape Causes of sexual violence Child sexual initiation Estimates of sexual violence Forced prostitution Cybersex trafficking Human trafficking Fetish slaves Sexual slavery Violence against prostitutes Post-assault treatment of victims of sexual assault Rape Acquaint...

 

Not to be confused with Batroun District. City in North GovernorateBatroun البترونBotrysCityThe port at the old city of Batroun with the St. Stephens ChurchBatrounLocation of Batroun within LebanonCoordinates: 34°15′0″N 35°39′0″E / 34.25000°N 35.65000°E / 34.25000; 35.65000Country LebanonGovernorateNorth GovernorateDistrictBatroun DistrictGovernment • MayorMarcelino Al HarkElevation34 m (112 ft)Population • Tota...

Pour les articles homonymes, voir Vineland. Cet article est une ébauche concernant une localité du New Jersey. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. VinelandVineland en 2010.Nom officiel (en) VinelandNom local (en) VinelandGéographiePays  États-UnisÉtat New JerseyComté comté de CumberlandSuperficie 178,79 km2 (2010)Surface en eau 0,88 %Altitude 31 mCoordonnées 39° ...

 

Franco di Festival Film Austin pada 2011. James Franco adalah seorang aktor Amerika yang memulai kariernya dengan tampil dalam sebuah episode dari serial televisi Pacific Blue (1997). Ia mencapai puncak kariernya dalam serial televisi komedi-drama Freaks and Geeks (1999–2000).[1] Setelah debut filmnya dalam Never Been Kissed (1999),[2] Franco memenangkan Penghargaan Golden Globe untuk Aktor Terbaik – Film Televisi atas pemeranan aktor eponim dalam biopik televisi tahun 200...

 

Pour les articles homonymes, voir Comté du Prince-Édouard. Cet article est une ébauche concernant la Virginie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Comté du Prince-ÉdouardNom local (en) Prince Edward CountyGéographiePays  États-UnisÉtat VirginieChef-lieu FarmvilleSuperficie 916 km2Surface en eau 1,1 %Coordonnées 37° 13′ 12″ N, 78° 26′ 24″ ...

Pour les articles homonymes, voir Vaux et Aure. Vaux-sur-Aure Vaux-sur-Aure. Blason Administration Pays France Région Normandie Département Calvados Arrondissement Bayeux Intercommunalité Communauté de communes de Bayeux Intercom Maire Mandat Benoît Demoulins 2020-2026 Code postal 14400 Code commune 14732 Démographie Gentilé Vallonnais Populationmunicipale 291 hab. (2021 ) Densité 38 hab./km2 Géographie Coordonnées 49° 18′ 09″ nord, 0° 42′ ...

 

Belief that the divine pervades all of space and time and extends beyond it Not to be confused with Pandeism or Pantheism. Part of a series onTheism Types of faith Agnosticism Apatheism Atheism Classical theism Deism Henotheism Ietsism Ignosticism Monotheism Monism Dualism Monolatry Kathenotheism Omnism Pandeism Panentheism Pantheism Polytheism Transtheism Specific conceptions Brahman Creator Demiurge Deus Father Form of the Good God Great Architect Monad Mother Summum bonum Supreme Being Sus...