Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.
Внутри соединения образуется меньший выпуклый многогранник как общая часть всех членов соединения. Этот многогранник называется ядром для звёздчатых многогранников.
Наиболее известно соединение двух тетраэдров. Кеплер назвал это соединение по-латински stella octangula (звёздчатый октаэдр). Вершины двух тетраэдров задают куб, а их пересечение является октаэдром, грани которого лежат на тех же плоскостях, что и грани составляющих тетраэдров. Таким образом, соединение является приведением к звезде октаэдра и, фактически, его единственным возможным приведением.
Звёздчатый октаэдр можно также рассматривать как двойственно-правильное соединение.
Соединение пяти тетраэдров имеет две зеркальные версии, которые вместе дают соединение десяти тетраэдров. Все соединения тетраэдров самодвойственны, а соединение пяти кубов двойственно соединению пяти октаэдров.
Двойственные соединения
Двойственное соединение — это соединение многогранника и двойственного ему, расположенных взаимно противоположно относительно общей вписанной или полувписанной сферы, так что ребро одного многогранника пересекает двойственное ребро двойственного многогранника. Существует пять таких соединений правильных многогранников.
Соединение малого звёздчатого додекаэдра и большого додекаэдра выглядит внешне как тот же самый малый звёздчатый додекаэдр, поскольку большой додекаэдр содержится полностью внутри него. По этой причине изображение малого звёздчатого додекаэдра, приведённое выше, показано в виде рёберного каркаса.
В 1976 Джон Скиллинг (John Skilling) опубликовал статью Однородные соединения однородных многогранников[1], в которой перечислил 75 соединений (включая 6 бесконечных множеств призматических соединений, №20-25), полученных из однородных многогранников с помощью вращений. (Каждая вершина является вершинно транзитивной[англ.].) Список включает пять соединений правильных многогранников из списка выше. [1]
Эти 75 однородных соединений приведены в таблице ниже. В большинстве соединений разные цвета соответствуют разным составляющим. Некоторые хиральные пары раскрашены согласно зеркальной симметрии.
1—19: Смесь (4,5,6,9,17 являются пятью правильными соединениями)
Соединение четырёх кубов (слева) не является ни правильным, ни двойственным, ни однородным соединением. Двойственное ему соединение четырёх октаэдров (справа) — однородное.
В четырёхмерном пространстве существует большое число правильных соединений правильных многогранников. Коксетер перечислил некоторые из них в своей книге Правильные многогранники[англ.][2].
В терминах теории групп, если G является группой симметрии соединения многогранников и группа действует транзитивно на многогранник (так что любой многогранник может быть в любой другой, как в однородных соединениях), тогда, если H является стабилизатором одного выбранного многогранника, многогранники могут быть определены по орбитеG/H.
Соединение мозаик
Существует восемнадцать двупараметрических семейств правильных соединений мозаик на евклидовой плоскости. В гиперболическом пространстве известны пять однопараметрических семейств и семнадцать изолированных мозаик, но список не является завершённым.
Евклидовы и гиперболические семейства 2 {p,p} (4 ≤ p ≤ ∞, p целое) аналогичны сферическим звёздчатым октаэдрам, 2 {3,3}.
Некоторые примеры евклидовых и гиперболических правильных соединений
Известным семейством правильных еквлидовых соединений сот в пространствах размерности пять и выше является бесконечное семейство гиперболических сот[англ.], имеющих общие вершины и грани. Такое соединение может иметь произвольное число ячеек в соединении.
Существуют также двойственно-правильные соединения мозаик. Простым примером служит E2-соединение шестиугольной мозаики и её двойственной треугольной. Евклидово соединение двух гиперболических сот правильно и двойственно правильно.
John Skilling. Uniform Compounds of Uniform Polyhedra // Mathematical Proceedings of the Cambridge Philosophical Society. — 1976. — Т. 79. — doi:10.1017/S0305004100052440..
P. Cromwell. Polyhedra. — United Kingdom: Cambridge, 1997. — С. 79–86 Archimedean solids. — ISBN 0-521-55432-2.
Magnus Wenninger.Dual Models. — Cambridge: Cambridge University Press, 1983. — P. 51–53..
Michael G. Harman. Polyhedral Compounds. — unpublished manuscript, 1974..
Edmund Hess. Zugleich Gleicheckigen und Gleichflächigen Polyeder. — Schriften der Gesellschaft zur Berörderung der Gasammten Naturwissenschaften zu Marburg. — 1876. — Т. 11. — С. 5–97.
Anthony Pugh. Polyhedra: A visual approach. — California: University of California Press Berkeley, 1976. — ISBN 0-520-03056-7. стр. 87 Five regular compounds