Рецептивное поле

Рецептивное поле (англ. receptive field) сенсорного нейрона — участок с рецепторами, которые при воздействии на них определённого стимула приводят к изменению возбуждения этого нейрона.
Концепция рецептивных полей может быть применима ко всей нервной системе. Если множество сенсорных рецепторов образует синапсы c единственным нейроном, они совместно формируют рецептивное поле этого нейрона. Например, рецептивное поле ганглионарной (ганглиозной) клетки сетчатки глаза представлено фоторецепторными клетками[англ.] (палочками или колбочками), а группа ганглионарных клеток, в свою очередь, создаёт рецептивное поле для одного из нейронов мозга. В итоге к одному нейрону более высокого синаптического уровня сходятся импульсы от многих фоторецепторов; и этот процесс называется конвергенцией.

Слуховая система

В качестве рецептивных полей слуховой системы могут рассматриваться части слухового пространства (англ. auditory space) или диапазоны слуховых частот. Лишь немногие исследователи трактуют слуховые рецептивные поля как определённые участки сенсорного эпителия, например, группы волосковых клеток спирального органа улитки внутреннего уха млекопитающих.

Соматосенсорная система

Рецептивные поля соматосенсорной системы — это участки кожи или внутренних органов. Размеры рецептивных полей неодинаковы и зависят от типа механорецепторов.

Большое рецептивное поле нейрона позволяет отслеживать изменения на большей площади чувствительной поверхности, но обеспечивает меньшую разрешающую способность ощущения. Таким образом, пальцы, которые должны осязать тонкие детали, имеют множество плотно расположенных (до 500 на 1 см3) механорецепторов с маленькими рецептивными полями (около 10 мм2), тогда как спина, бёдра и голени имеют меньшее количество рецепторов, объединённых в большие рецептивные поля. Как правило, в центральной части большого рецептивного поля имеется одно «горячее пятно», стимуляция которого вызывает наиболее интенсивный ответ.

Нейроны коры головного мозга, связанные с тактильными ощущениями, имеют рецептивные поля на коже, размеры и расположение которых могут изменяться по мере накопления человеком индивидуального опыта или вследствие повреждения сенсорных (афферентных) нервных волокон. В основном эти нейроны имеют относительно большие рецептивные поля — гораздо большего размера, чем у нейронов спинномозгового узла (спинального ганглия). Тем не менее, благодаря особым механизмам возбуждения и торможения в рецептивных полях, улучшающим пространственное разрешение, эти кортикальные нейроны способны распознавать тонкие детали.

Зрительная система

Рецептивные поля зрительной системы можно считать частями зрительного пространства (англ. visual space). Например, в качестве рецептивного поля одной фоторецепторной клетки можно рассматривать конус, охватывающий все возможные направления, с которых эта клетка способна воспринимать свет. Его вершина находится в центре хрусталика, а основание — в бесконечности зрительного пространства. Но традиционно зрительные рецептивные поля изображаются на плоскости — как круги, квадраты, прямоугольники… Подобные изображения по сути являются сечениями конуса, отвечающего рецептивному полю одной специфической клетки, плоскостью, в которой исследователь предъявлял конкретный визуальный стимул. Рецептивные поля бинокулярных нейронов первичной зрительной коры (или стриарной области — поле Бродмана 17, зрительная зона V1) не уходят в оптическую бесконечность, а ограничены определённым расстоянием от точки, в которую направлен взгляд — «точки фиксации глаз» (См. зона Панума — англ. Panum's area).

Рецептивные поля нейронов зачастую определяются как области сетчатки, освещение которых изменяет возбуждение конкретного нейрона. Для ганглионарных (ганглиозных) клеток сетчатки эта область включает все фоторецепторы — палочки или колбочки одного глаза, связанные с конкретной ганглионарной клеткой посредством синаптических контактов с биполярными, горизонтальными[англ.] и амакринными[англ.] (амакриновыми) клетками. Для бинокулярных нейронов зрительной коры рецептивные поля определяются как совокупность соответствующих областей сетчаток правого и левого глаза. Эти области могут быть закартированы по отдельности в каждой сетчатке (при закрывании другого глаза), но полностью связь каждой из областей с возбуждением исследуемого нейрона обнаруживается только в том случае, когда открыты оба глаза.

Хьюбел и Визель (например, Hubel, 1963) развили теорию о том, что рецептивные поля клеток каждого уровня зрительной системы формируются синаптическими соединениями с клетками более низкого иерархического уровня этой системы. В этом случае небольшие и просто устроенные рецептивные поля могут комбинироваться, формируя обширные и сложные рецептивные поля. Позднее нейробиологи усовершенствовали эту относительно простую концепцию, допустив, что нейроны низших уровней зрительной системы связаны обратными эфферентными связями с нейронами более высоких уровней.

В настоящее время составлены карты рецептивных полей для клеток всех уровней зрительной системы — от фоторецепторов и ганглионарных (ганглиозных) клеток сетчатки до нейронов латерального (наружного) коленчатого тела, первичной и экстрастриарной зрительной коры. Исследования, основанные лишь на ощущениях, не могут дать полной картины для понимания феномена зрения, поэтому здесь, так же, как и при изучении мозга, должны применяться электрофизиологические методы — тем более, что в эмбриогенезе млекопитающих сетчатка возникает в процессе дальнейшей дифференциации латеральных выпячиваний промежуточного мозга (так называемых глазных пузырей).[1]

Ганглионарные клетки сетчатки

Ганглионарные (ганглиозные) клетки сетчатки
с on - и off- центрами отвечают диаметрально противоположным образом на освещение центра и периферии рецептивного поля.
Сильный ответ соответствует высокочастотному возбуждению, слабый — низкочастотному, отсутствие ответа — отсутствию активности.
Распознавание границ изображения (краёв, углов) рецептивными полями сетчатки — грубая компьютерная аппроксимация.
Размеры рецептивных полей увеличиваются от центра сетчатки к её периферии.
Визуальная информация от двух типов клеток (с on- и off-центрами) показана красным и зелёным цветом, соответственно.

Каждая ганглионарная (ганглиозная) клетка или оптическое нервное волокно (англ. optic nerve fiber) порождает рецептивное поле, расширяющееся по мере возрастания интенсивности освещения. Если размер поля максимален, то свет на его периферии интенсивнее, нежели в центре, отражая то, что некоторые синаптические пути предпочтительнее других.

Организация рецептивных полей ганглиозных клеток, составленных из входов многих палочек или колбочек, позволяет обнаруживать контраст, что используется для выявления краевых частей наблюдаемых объектов. Каждое рецептивное поле подразделяется на две части: центральный диск — «центр» и концентрическое кольцо — «периферию»; каждая из этих частей реагирует на свет противоположным образом. Так, если освещение центра рецептивного поля увеличивает возбуждение конкретной ганглиозной клетки с так называемым on-центром (см. далее), то воздействие света на периферию этого же поля оказывает тормозящее воздействие на эту ганглиозную клетку.

Существует два основных типа ганглиозных клеток: с «on-центром» и «off-центром». Клетка с on-центром возбуждается при освещении центра и тормозится при освещении периферии её рецептивного поля. Реакция на свет клетки с off-центром диаметрально противоположная. Кроме того, у млекопитающих имеются клетки промежуточного (on-off) типа, которым свойственна кратковременная реакция на освещение по on-типу и на затенение по off-типу.[2] Освещение центральной части рецептивного поля приводит к деполяризации и возрастанию возбуждения нейрона (например, ганглионарной клетки) с on-центром, освещение периферии рецептивного поля приводит к гиперполяризации и торможению этого нейрона, а одновременная световая стимуляция и центра, и периферии рецептивного поля вызывает слабую активацию (вследствие суммации эффектов, связанных с реакциями центральной и периферической частей рецептивного поля). Ганглионарная клетка (или другой нейрон) с off-центром возбуждается при световой стимуляции периферии и тормозится при освещении центра своего рецептивного поля (см. рисунок).[2]

Фоторецепторы, которые включены в состав рецептивных полей нескольких ганглиозных клеток, способны как возбуждать, так и тормозить постсинаптические нейроны (англ. postsynaptic neurons), поскольку они высвобождают нейротрансмиттер глутамат на своих синапсах, что может способствовать как деполяризации, так и гиперполяризации мембранного потенциала клетки, в зависимости от того, какие именно ионные каналы открываются нейротрансмиттером. Организация рецептивного поля по принципу центр-периферия позволяет ганглиозным клеткам передавать информацию не только о том, освещены ли фоторецепторные клетки, но также и о различиях в параметрах возбуждения подобных клеток, расположенных в центре и на периферии рецептивного поля. Последнее даёт возможность ганглиозным клеткам посылать нейронам более высоких синаптических уровней информацию о контрастности изображения. Размер рецептивного поля влияет на пространственную частоту (англ. spatial frequency) визуальной информации: небольшие рецептивные поля активируются сигналами с высокими пространственными частотами и тонкой детализацией изображения; большие рецептивные поля — сигналами с низкими пространственными частотами и плохой детализацией. Рецептивные поля ганглиозных клеток сетчатки передают информацию о дискретности распределения света, падающего на сетчатку, а это зачастую позволяет обнаруживать краевые части визуальных объектов. При адаптации к темноте инактивируется периферийная зона рецептивного поля, но его активная часть, а следовательно, площадь суммации сигналов и совокупная чувствительность, могут реально возрасти вследствие ослабления взаимного горизонтального торможения центра и периферии рецептивного поля.[3]

Как правило, рецептивные поля лучше реагируют на движущиеся объекты — такие как светлое или тёмное пятно, пересекающее поле от центра к периферии (или в противоположном направлении), а также на контуры объектов — вследствие нарушения равномерности в распределении света по поверхности поля. Диаметр центральной части рецептивного поля ганглионарной клетки сетчатки совпадает с протяжённостью её дендритов, тогда как площадь периферии рецептивного поля определяется амакринными клетками, устанавливающими связь данной ганглионарной клетки со множеством биполярных клеток. Кроме того, амакринные клетки могут не допускать передачи сигналов в ганглионарную клетку от периферии её рецептивного поля, тем самым усиливая доминирование реакции центра рецептивного поля («включённый центр и выключенная периферия» — англ. “on-center, off-periphery”). Ганглионарная клетка сетчатки кролика возбуждается при движении светового пятна в «предпочитаемом» (англ. "preferred") направлении и не реагирует, если направление является противоположным («нулевым», англ. "null").[4][5] Ганглиозные клетки, способные различать направление движения, найдены также в сетчатке кошки, земляной белки, голубя. Считается, что обнаруженные свойства рецептивных полей ганглиозных клеток связаны с особенностями сложных механизмов торможения, действующих в сетчатке.[6][7][8]

Латеральное коленчатое тело

На более высоких уровнях зрительной системы группы ганглионарных (ганглиозных) клеток формируют рецептивные поля нейронов подкоркового зрительного центра — латерального (наружного) коленчатого тела. Рецептивные поля напоминают таковые ганглионарных клеток, с антагонистической системой «центр-периферия»; здесь также имеются нейроны с on- или off- центрами (приблизительно в равном количестве).[9]

Зрительная кора больших полушарий

Рецептивные поля нейронов зрительной зоны коры крупнее по размерам и имеют большую избирательность по отношению к визуальным стимулам, нежели ганглиозные клетки сетчатки или нейроны латерального коленчатого тела. Хьюбел и Визель (например, Hubel, 1963) подразделили рецептивные поля корковых нейронов зрительной системы на «простые», «сложные» и «сверхсложные».[9] «Простые» рецептивные поля имеют удлинённую форму, к примеру, с центральной эллипсовидной зоной возбуждения и антагонистической зоной торможения по периферии эллипса. Либо они могут быть почти прямоугольными; при этом одна из длинных сторон прямоугольника является зоной возбуждения, а другая — антагонистической зоной торможения. Изображения, активирующие нейроны этих рецептивных полей, должны быть ориентированы определённым образом. Чтобы возбудить нейрон со «сложным» рецептивных полем, световому стимулу в виде полоски недостаточно быть правильно ориентированным — нужно ещё и двигаться, причём в строго определённом направлении. Для активации корковых нейронов со «сверхсложными» рецептивными полями зрительному стимулу в виде полоски необходимо обладать всеми вышеперечисленными свойствами, и к тому же длина этой полоски должна быть строго определённой.

Экстрастриарная зрительная кора

Экстрастриарная зрительная кора (поля Бродмана 18 и 19) находится за пределами первичной зрительной коры[2]. Здесь нейроны могут иметь очень большие рецептивные поля, и для их активации могут потребоваться очень непростые изображения. Например, рецептивные поля нейронов нижневисочной извилины (англ. inferotemporal cortex), пересекают среднюю линию зрительного пространства, и эти нейроны активируются такими сложными визуальными образами, как радиальная решётка или кисти рук. Также было обнаружено, что нервные клетки вентральной поверхности веретеновидной извилины (на границе между затылочной и височной долями), где находится так называемая «зона распознавания лиц»[англ.], реагируют, в основном, на изображения лиц[10]. Это важное открытие было получено с помощью технологии функциональной магнитно-резонансной томографии. Позднее оно было подтверждено на уровне исследования нервных клеток[11]. Подобным способом проводятся поиски других специфических зон зрительной коры; например, имеются относительно недавние публикации, полагающие, что так называемая парагиппокампальная навигационная зона (англ. parahippocampal place area) может быть отчасти специализирована к распознаванию зданий. Кстати, в одном из последних исследований высказывается предположение, что «зона распознавания лиц» веретеновидной извилины, возможно, не только выполняет функцию, отражённую в её наименовании, но и вообще служит для различения отдельных частей целого.

См. также

Примечания

  1. Гилберт С. Биология развития: в 3-х т = S.F. Gilbert. Developmental Biology. - 1988 by Sinauer Assotiates. — М.: Мир, 1993. — Т. 1: Пер. с англ. — 228 с. — ISBN 5-03-001831-X (русск.).
  2. 1 2 3 Часть III. Общая и специальная сенсорная физиология // Физиология человека: в 3-х томах = Human Physiology. Ed. by R.F. Schmidt, G. Thews. 2nd, completely revised edition (translated from German by M.A. Biederman-Thorson) / под ред. Р. Шмидта и Г. Тевса. — изд-е 2-е, перераб. и дополн. — М.: Мир, 1996. — Т. 1. Пер. с англ. — С. 178—321. — 323 с. — 10 000 экз. — ISBN 5-03-002545-6.
  3. Островский М. А., Шевелев И. А. Глава 14. Сенсорные системы // Физиология человека. Учебник (В двух томах. Т. II) / под ред. В. М. Покровского, Г. Ф. Коротько. — М. — С. 201—259. — 368 с. — (Учеб. лит. для студентов мед. вузов). — 10 000 экз. — ISBN 5-225-02693-1.
  4. Barlow H. B., Hill R. M. Selective sensitivity to direction of motion in ganglion cells of the rabbit's retina (англ.) // Science : journal. — 1963. — Vol. 139. — P. 412—414.
  5. «eye, human.» Encyclopædia Britannica. Encyclopaedia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2010.
  6. Barlow H. B., Levick W. R. The mechanism of directionally selective units in rabbit's retina (англ.) // J Physiol[англ.] : journal. — 1965. — June (vol. 178, no. 3). — P. 477—504. — PMID 5827909. Архивировано 11 декабря 2022 года.
  7. Michael C. R. Receptive fields of directionally selective units in the optic nerve of the ground squirrel (англ.) // Science : journal. — 1966. — May (vol. 152, no. 725). — P. 1092—1095. — PMID 5931459.
  8. Тамар Г. Основы сенсорной физиологии = Tamar H. Principles of Sensory Physiology. - Charles & Thomas Publishers, Springfield Illinois USA, 1972 / Пер. с англ. Н. Ю. Алексеенко. — М.: Мир, 1976. — 521 с.
  9. 1 2 Шульговский В. В. Основы нейрофизиологии. — М.: Аспект Пресс, 2000. — 277 с. — 5000 экз. — ISBN 5-7567-0134-6.
  10. Kanwisher N., McDermott J., Chun M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception (англ.) // J Neurosci[англ.] : journal. — 1997. — June (vol. 17, no. 11). — P. 4302—4311. — PMID 9151747. Архивировано 9 марта 2011 года.
  11. Tsao D. Y., Freiwald W. A., Tootell R. B., Livingstone M. S. A cortical region consisting entirely of face-selective cells (англ.) // Science : journal. — 2006. — February (vol. 311, no. 5761). — P. 617—618. — PMID 16456083. Архивировано 23 ноября 2018 года.

Ссылки

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. I'm Not CoolAlbum mini karya HyunaDirilis28 Januari 2021Direkam2018-2020BahasaKoreaInggrisLabelP NationKakao MKronologi Hyuna Lip & Hip(2017) I'm Not Cool(2021) Singel dalam album I'm Not Cool Flower ShowerDirilis: 5 November 2019 I'm Not CoolD...

 

Fondation MacArthur (en) Committed to building a more just, verdant, and peaceful world.HistoireFondation 6 janvier 19781970CadreType Private foundationForme juridique CharitéSiège Marquette BuildingChicago (60603, États-Unis)IllinoisPays  États-UnisOrganisationFondateurs John D. MacArthur (en), Catherine T. MacArthur (en)Récompense Peabody AwardsSite web (en) www.macfound.orgmodifier - modifier le code - modifier Wikidata La fondation John D. et Catherine T. MacArthur est...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Berlin Barat – berita · surat kabar · buku · cendekiawan · JSTOR Berlin BaratBerlin (West) Inggris : West BerlinSektor yang diduduki Sekutu di Berlin1949–1990 Panji daerah Coat of arms Berlin bara...

Timothy Hutton Timothy T. Hutton (lahir 16 Agustus 1960) merupakan seorang aktor dan sutradara berkebangsaan Amerika Serikat yang memenangkan nominasi Academy Award. Dia dilahirkan di Malibu, California. Dia berkarier di dunia film sejak tahun 1965. Filmografi Aktor Never Too Late (1965) as Boy running to his daddy (uncredited) Sultan and the Rock Star (1978) Zuma Beach (1978) as Art The Best Place To Be (1979) as Tommy Callahan Friendly Fire (1979) as John Mullen And Baby Makes Six (1979) as...

 

Psychological process of selectively perceiving and prioritising discrete aspects of information This article is about the psychological concept of attention. For other uses, see Attention (disambiguation). Cognitive psychology Perception Visual perception Object recognition Face recognition Pattern recognition Attention Memory Aging and memory Emotional memory Learning Long-term memory Metacognition Language Metalanguage Thinking Cognition Concept Reasoning Decision making Problem solving Nu...

 

You can help expand this article with text translated from the corresponding article in French. Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this template: there are already 6,168 artic...

Byzantine province Theme of SicilyΣικελία, θέμα ΣικελίαςTheme of the Byzantine Empire687/695–902The Byzantine Empire and its themes c. 717CapitalSyracuse, then RhegionHistorical eraMiddle Ages• Established 687/695• Fall of Taormina 902• Remnant renamed as the Theme of Calabria Mid-10th century Preceded by Succeeded by Sicily (Roman province) Emirate of Sicily Theme of Calabria Today part ofItalyMalta[1] The Theme of Sicily (Greek: θέμ...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Abril de 2014) Copa Libertadores da Américade Futebol Feminino de 2014 VI Copa Libertadores Femenina Copa Libertadores da América de Futebol Feminino de 2014 Dados Participantes 12 Organização CONMEBOL Anfitrião  Brasil (São Jos...

 

Anxiety disorder associated with social situations This article is about the disorder. For the emotion, see Social anxiety. Social anxiety disorder is distinct from the personality traits of introversion and shyness.[1][2] Medical conditionSocial anxiety disorderOther namesSocial phobiaSpecialtyPsychiatrySymptomsSocial isolationHypervigilanceUsual onsetTypically during adolescenceRisk factorsGenetic factorsPreexisting mental disorderTreatmentPsychotherapyAntidepressant medicat...

Civil War era military outposts in the Pacific Northwest The District of Oregon was a Union Army command department formed during the American Civil War. History The District of Oregon was part of the independent Department of the Pacific reconstituted by consolidating the Departments of California and Oregon, which was created on January 15, 1861 when the Army was reorganized. The district was created the same day, and comprised the same territory as the former Department of Oregon, the stat...

 

Priyamvada Singhin 2019Bornc. 1983AjmerNationalityIndianEducationMayo College Girls SchoolOccupation(s)TV Industry and Heritage RestorationKnown forHeritage Restoration in RajasthanSpouseVijayendra Chandra Deb Priyamvada Singh (born c. 1983) is a media professional and a heritage restorer based in India. After working in the television industry in Mumbai for a decade, she returned to her ancestral home in Rajasthan, and used the skills of the local community to restore an anc...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan...

 

Family of mainframe computers 1970–1990 For the printer, see IBM 370 printer. System/370DesignerIBMBits32-bitIntroduced1970DesignCISCTypeRegister–RegisterRegister–MemoryMemory–MemoryEncodingVariable (2, 4 or 6 bytes long)BranchingCondition code, indexing, countingEndiannessBigPredecessorSystem/360SuccessorS/370-XA, ESA/370, ESA/390, z/ArchitectureRegistersGeneral-purpose16× 32-bitFloating point4× 64-bit[a] History of IBM mainframes, 1952–present Market name 700/7000 series...

 

French football manager (born 1977) Thierry Henry Henry in 2021Personal informationFull name Thierry Daniel Henry[1]Date of birth (1977-08-17) 17 August 1977 (age 46)[2]Place of birth Les Ulis, FranceHeight 1.88 m (6 ft 2 in)[3]Position(s) ForwardTeam informationCurrent team France U21 (manager)France Olympic (manager)Youth career1983–1989 CO Les Ulis1989–1990 US Palaiseau1990–1992 Viry-Châtillon1990–1992 INF Clairefontaine1992–1994 Monac...

Children's book by Marguerite Henry Not to be confused with Misty of Chincoteague (horse). This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message...

 

Rounded hills of bare granite formed by exfoliation Mount Bulka, a granite monolith in Bayanaul National Park, Kazakhstan. Granite domes are domical hills composed of granite with bare rock exposed over most of the surface. Generally, domical features such as these are known as bornhardts. Bornhardts can form in any type of plutonic rock but are typically composed of granite and granitic gneiss.[1] As granitic plutons cool kilometers below the Earth's surface, minerals in the rock cry...

 

Guide or instructor in religious matters in Dharmic religion For other uses, see Acharya (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Acharya – news · newspapers · books · scholar · JSTOR (March 2015) (Learn how and when to remove this message) In Indian religions and society, an acharya...

American baseball player (1943–2019) Baseball player Dave MarshallOutfielderBorn: (1943-01-14)January 14, 1943Artesia, California, U.S.Died: June 6, 2019(2019-06-06) (aged 76)Lakewood, California, U.S.Batted: LeftThrew: RightMLB debutSeptember 7, 1967, for the San Francisco GiantsLast MLB appearanceJune 22, 1973, for the San Diego PadresMLB statisticsBatting average.246Home runs16Runs batted in114 Teams San Francisco Giants (1967–1969) New York Mets (197...

 

Rod calculus or rod calculation was the mechanical method of algorithmic computation with counting rods in China from the Warring States to Ming dynasty before the counting rods were increasingly replaced by the more convenient and faster abacus. Rod calculus played a key role in the development of Chinese mathematics to its height in Song Dynasty and Yuan Dynasty, culminating in the invention of polynomial equations of up to four unknowns in the work of Zhu Shijie. Japanese counting board wi...