Share to: share facebook share twitter share wa share telegram print page

Метод Ньютона

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (16431727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.

Описание метода

Вывод

Чтобы численно решить уравнение методом простой итерации, его необходимо привести к эквивалентному уравнению: , где  — сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню и что заданная функция непрерывна , окончательная формула для такова:

С учётом этого функция определяется:

При некоторых условиях эта функция в окрестности корня осуществляет сжимающее отображение.

В этом случае алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

По теореме Банаха последовательность приближений стремится к корню уравнения .

Иллюстрация метода Ньютона (синим изображена функция , ноль которой необходимо найти, красным — касательная в точке очередного приближения ). Здесь мы можем увидеть, что последующее приближение лучше предыдущего .

Геометрическая интерпретация

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к графику исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Пусть 1) вещественнозначная функция непрерывно дифференцируема на интервале  ;
2) существует искомая точка  :  ;
3) существуют и такие, что
для
и для  ;
4) точка такова, что .
Тогда формула итеративного приближения к может быть выведена из геометрического смысла касательной следующим образом:

где  — угол наклона касательной прямой к графику в точке .

Следовательно (в уравнении касательной прямой полагаем ) искомое выражение для имеет вид :

Если , то это значение можно использовать в качестве следующего приближения к .

Если , то имеет место «перелёт» (корень лежит рядом с границей ). В этом случае надо (воспользовавшись идеей метода половинного деления) заменять на до тех пор, пока точка «не вернётся» в область поиска .

Замечания. 1) Наличие непрерывной производной даёт возможность строить непрерывно меняющуюся касательную на всей области поиска решения .
2) Случаи граничного (в точке или в точке ) расположения искомого решения рассматриваются аналогичным образом.
3) С геометрической точки зрения равенство означает, что касательная прямая к графику в точке - параллельна оси и при не пересекается с ней в конечной части.
4) Чем больше константа и чем меньше константа из пункта 3 условий, тем для пересечение касательной к графику и оси ближе к точке , то есть тем ближе значение к искомой .

Итерационный процесс начинается с некоторого начального приближения , причём между и искомой точкой не должно быть других нулей функции , то есть «чем ближе к искомому корню , тем лучше». Если предположения о нахождении отсутствуют, методом проб и ошибок можно сузить область возможных значений, применив теорему о промежуточных значениях.

Для предварительно заданных , итерационный процесс завершается если и .
В частности, для матрицы дисплея и могут быть рассчитаны, исходя из масштаба отображения графика , то есть если и попадают в один вертикальный, а и в один горизонтальный ряд.

Алгоритм

  1. Задается начальное приближение .
  2. Пока не выполнено условие остановки, в качестве которого следует взять , где выполняет роль абсолютной погрешности (так как метод Ньютона является частным случаем метода простой итерации[1]), вычисляют новое приближение: .

Пример

Иллюстрация применения метода Ньютона к функции с начальным приближением в точке .
График последовательных приближений.
График сходимости.
Согласно способу практического определения скорость сходимости может быть оценена как тангенс угла наклона графика сходимости, то есть в данном случае равна двум.

Рассмотрим задачу о нахождении положительных , для которых . Эта задача может быть представлена как задача нахождения нуля функции . Имеем выражение для производной . Так как для всех и для , очевидно, что решение лежит между 0 и 1. Возьмём в качестве начального приближения значение , тогда:

Подчёркиванием отмечены верные значащие цифры. Видно, что их количество от шага к шагу растёт (приблизительно удваиваясь с каждым шагом): от 1 к 2, от 2 к 5, от 5 к 10, иллюстрируя квадратичную скорость сходимости.


Условия применения

Иллюстрация расхождения метода Ньютона, применённого к функции с начальным приближением в точке .

Рассмотрим ряд примеров, указывающих на недостатки метода.

Контрпримеры

  • Если начальное приближение недостаточно близко к решению, то метод может не сойтись.

Пусть

Тогда

Возьмём ноль в качестве начального приближения. Первая итерация даст в качестве приближения единицу. В свою очередь, вторая снова даст ноль. Метод зациклится и решение не будет найдено. В общем случае построение последовательности приближений может быть очень запутанным.

График производной функции при приближении к нулю справа.

Рассмотрим функцию:

Тогда и всюду, кроме 0.

В окрестности корня производная меняет знак при приближении к нулю справа или слева. В то время, как для .

Таким образом не ограничено вблизи корня, и метод будет расходиться, хотя функция всюду дифференцируема, её производная не равна нулю в корне, бесконечно дифференцируема везде, кроме как в корне, а её производная ограничена в окрестности корня.

Рассмотрим пример:

Тогда и за исключением , где она не определена.

На очередном шаге имеем :

Скорость сходимости полученной последовательности составляет приблизительно 4/3. Это существенно меньше, нежели 2, необходимое для квадратичной сходимости, поэтому в данном случае можно говорить лишь о линейной сходимости, хотя функция всюду непрерывно дифференцируема, производная в корне не равна нулю, и бесконечно дифференцируема везде, кроме как в корне.

  • Если производная в точке корня равна нулю, то скорость сходимости не будет квадратичной, а сам метод может преждевременно прекратить поиск, и дать неверное для заданной точности приближение.

Пусть

Тогда и следовательно . Таким образом сходимость метода не квадратичная, а линейная, хотя функция всюду бесконечно дифференцируема.

Ограничения

Пусть задано уравнение , где и надо найти его решение.

Ниже приведена формулировка основной теоремы, которая позволяет дать чёткие условия применимости. Она носит имя советского математика и экономиста Леонида Витальевича Канторовича (19121986).

Теорема Канторовича.

Если существуют такие константы , что:

  1. на , то есть существует и не равна нулю;
  2. на , то есть ограничена;
  3. на , и ;

Причём длина рассматриваемого отрезка . Тогда справедливы следующие утверждения:

  1. на существует корень уравнения ;
  2. если , то итерационная последовательность сходится к этому корню: ;
  3. погрешность может быть оценена по формуле .

Из последнего из утверждений теоремы в частности следует квадратичная сходимость метода:

Тогда ограничения на исходную функцию будут выглядеть так:

  1. функция должна быть ограничена;
  2. функция должна быть гладкой, дважды дифференцируемой;
  3. её первая производная равномерно отделена от нуля;
  4. её вторая производная должна быть равномерно ограничена.

Историческая справка

Метод был описан Исааком Ньютоном в рукописи «Об анализе уравнениями бесконечных рядов» (лат. «De analysi per aequationes numero terminorum infinitas»), адресованной в 1669 году Барроу, и в работе «Метод флюксий и бесконечные ряды» (лат. «De metodis fluxionum et serierum infinitarum») или «Аналитическая геометрия» (лат. «Geometria analytica») в собраниях трудов Ньютона, которая была написана в 1671 году. В своих работах Ньютон вводит такие понятия, как разложение функции в ряд, бесконечно малые и флюксии (производные в нынешнем понимании). Указанные работы были изданы значительно позднее: первая вышла в свет в 1711 году благодаря Уильяму Джонсону, вторая была издана Джоном Кользоном в 1736 году уже после смерти создателя. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения , а последовательность полиномов и в результате получал приближённое решение .

Этот же метод применён Ньютоном в его трактате "Математические начала" для решения уравнения Кеплера, где Ньютон предложил вполне современную аналитическую форму вычисления, записав последовательность приближений в виде переразлагаемого в каждой новой точке аналитического ряда:

ряд ... сходится настолько быстро, что едва ли когда-нибудь понадобится идти в нём далее второго члена ...

[2]

Впервые метод был опубликован в трактате «Алгебра» Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе «Общий анализ уравнений» (лат. «Analysis aequationum universalis»). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений вместо более трудной для понимания последовательности полиномов, использованной Ньютоном. Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

В 1879 году Артур Кэли в работе «Проблема комплексных чисел Ньютона — Фурье» (англ. «The Newton-Fourier imaginary problem») был первым, кто отметил трудности в обобщении метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов.

Обобщения и модификации

Иллюстрация последовательных приближений метода одной касательной, применённого к функции с начальным приближением в точке .

Метод секущих

Родственный метод секущих является «приближённым» методом Ньютона и позволяет не вычислять производную. Значение производной в итерационной формуле заменяется её оценкой по двум предыдущим точкам итераций:

.

Таким образом, основная формула имеет вид

Этот метод схож с методом Ньютона, но имеет немного меньшую скорость сходимости. Порядок сходимости метода равен золотому сечению — 1,618…

Замечания. 1) Для начала итерационного процесса требуются два различных значения и .
2) В отличие от «настоящего метода Ньютона» (метода касательных), требующего хранить только (и в ходе вычислений — временно и ), для метода секущих требуется сохранение , , , .
3) Применяется, если вычисление затруднено (например, требует большого количества машинных ресурсов: времени и/или памяти).

Метод одной касательной

В целях уменьшения числа обращений к значениям производной функции применяют так называемый метод одной касательной.

Формула итераций этого метода имеет вид:

Суть метода заключается в том, чтобы вычислять производную лишь один раз, в точке начального приближения , а затем использовать это значение на каждой последующей итерации:

При таком выборе в точке выполнено равенство:

и если отрезок, на котором предполагается наличие корня и выбрано начальное приближение , достаточно мал, а производная непрерывна, то значение будет не сильно отличаться от и, следовательно, график пройдёт почти горизонтально, пересекая прямую , что в свою очередь обеспечит быструю сходимость последовательности точек приближений к корню.

Этот метод является частным случаем метода простой итерации. Он имеет линейный порядок сходимости.

Метод Ньютона-Фурье

Метод Ньютона-Фурье - это расширение метода Ньютона, выведенное Жозефом Фурье для получения оценок на абсолютную ошибку аппроксимации корня, в то же время обеспечивая квадратичную сходимость с обеих сторон.

Предположим, что f(x) дважды непрерывно дифференцируема на отрезке [a, b] и что f имеет корень на этом интервале. Дополнительно положим, что f(x), f(x) ≠ 0 на этом отрезке (например, это верно, если f(a) < 0, f(b) > 0, и f(x) > 0 на этом отрезке). Это гарантирует наличие единственного корня на этом отрезке, обозначим его α. Эти рассуждения относятся к вогнутой вверх функции. Если она вогнута вниз, то заменим f(x) на f(x), поскольку они имеют одни и те же корни.

Пусть x0 = b будет правым концом отрезка, на котором мы ищем корень, а z0 = a - левым концом того же отрезка. Если xn найдено, определим

которое выражает обычный метод Ньютона, как описано выше. Затем определим

где знаменатель равен f(xn), а не f(zn). Итерации xn будут строго убывающими к корню, а итерации zn - строго возрастающими к корню. Также выполняется следующее соотношение:

,

таким образом, расстояние между xn и zn уменьшается квадратичным образом.

Многомерный случай

Обобщим полученный результат на многомерный случай.

Пусть необходимо найти решение системы:

Выбирая некоторое начальное значение , последовательные приближения находят путём решения систем уравнений:

где .


Применительно к задачам оптимизации

Пусть необходимо найти минимум функции многих переменных . Эта задача равносильна задаче нахождения нуля градиента . Применим изложенный выше метод Ньютона:

где  — гессиан функции .

В более удобном итеративном виде это выражение выглядит так:

В случае квадратичной функции метод Ньютона находит экстремум за одну итерацию.

Нахождение матрицы Гессе связано с большими вычислительными затратами, и зачастую не представляется возможным. В таких случаях альтернативой могут служить квазиньютоновские методы, в которых приближение матрицы Гессе строится в процессе накопления информации о кривизне функции.

Метод Ньютона — Рафсона

Метод Ньютона — Рафсона является улучшением метода Ньютона нахождения экстремума, описанного выше. Основное отличие заключается в том, что на очередной итерации каким-либо из методов одномерной оптимизации выбирается оптимальный шаг:

где Для оптимизации вычислений применяют следующее улучшение: вместо того, чтобы на каждой итерации заново вычислять гессиан целевой функции, ограничиваются начальным приближением и обновляют его лишь раз в шагов, либо не обновляют вовсе.

Применительно к задачам о наименьших квадратах

На практике часто встречаются задачи, в которых требуется произвести настройку свободных параметров объекта или подогнать математическую модель под реальные данные. В этих случаях появляются задачи о наименьших квадратах:

Эти задачи отличаются особым видом градиента и матрицы Гессе:

где  — матрица Якоби вектор-функции ,  — матрица Гессе для её компоненты .

Тогда очередной шаг определяется из системы:

Метод Гаусса — Ньютона

Метод Гаусса — Ньютона строится на предположении о том, что слагаемое доминирует над . Это требование не соблюдается, если минимальные невязки велики, то есть если норма сравнима с максимальным собственным значением матрицы . В противном случае можно записать:

Таким образом, когда норма близка к нулю, а матрица имеет полный столбцевой ранг, шаг мало отличается от ньютоновского (с учётом ), и метод может достигать квадратичной скорости сходимости, хотя вторые производные и не учитываются. Улучшением метода является алгоритм Левенберга — Марквардта, основанный на эвристических соображениях.

Обобщение на комплексную плоскость

Бассейны Ньютона для полинома пятой степени . Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итераций.

До сих пор в описании метода использовались функции, осуществляющие отображения в пределах множества вещественных значений. Однако метод может быть применён и для нахождения нуля функции комплексной переменной. При этом процедура остаётся неизменной:

Особый интерес представляет выбор начального приближения . Ввиду того, что функция может иметь несколько нулей, в различных случаях метод может сходиться к различным значениям, и вполне естественно возникает желание выяснить, какие области обеспечат сходимость к тому или иному корню. Этот вопрос заинтересовал Артура Кэли ещё в 1879 году, однако разрешить его смогли лишь в 70-х годах двадцатого столетия с появлением вычислительной техники. Оказалось, что на пересечениях этих областей (их принято называть областями притяжения) образуются так называемые фракталы — бесконечные самоподобные геометрические фигуры.

Ввиду того, что Ньютон применял свой метод исключительно к полиномам, фракталы, образованные в результате такого применения, обрели название фракталов Ньютона или бассейнов Ньютона.

Реализация

Scala

object NewtonMethod {

  val accuracy = 1e-6

  @tailrec
  def method(x0: Double, f: Double => Double, dfdx: Double => Double, e: Double): Double = {
    val x1 = x0 - f(x0) / dfdx(x0)
    if (abs(x1 - x0) < e) x1
    else method(x1, f, dfdx, e)
  }

  def g(C: Double) = (x: Double) => x*x - C

  def dgdx(x: Double) = 2*x

  def sqrt(x: Double) = x match {
    case 0 => 0
    case x if (x < 0) => Double.NaN
    case x if (x > 0) => method(x/2, g(x), dgdx, accuracy) 
  }
}

Python

from math import sin, cos
from typing import Callable
import unittest


def newton(f: Callable[[float], float], f_prime: Callable[[float], float], x0: float, 
	eps: float=1e-7, kmax: int=1e3) -> float:
	"""
	solves f(x) = 0 by Newton's method with precision eps
	:param f: f
	:param f_prime: f'
	:param x0: starting point
	:param eps: precision wanted
	:return: root of f(x) = 0
	"""
	x, x_prev, i = x0, x0 + 2 * eps, 0
	
	while abs(x - x_prev) >= eps and i < kmax:
		x, x_prev, i = x - f(x) / f_prime(x), x, i + 1

	return x


class TestNewton(unittest.TestCase):
	def test_0(self):
		def f(x: float) -> float:
			return x**2 - 20 * sin(x)


		def f_prime(x: float) -> float:
			return 2 * x - 20 * cos(x)


		x0, x_star = 2, 2.7529466338187049383

		self.assertAlmostEqual(newton(f, f_prime, x0), x_star)


if __name__ == '__main__':
	unittest.main()

PHP

<?php
// PHP 5.4
function newtons_method(
	$a = -1, $b = 1, 
	$f = function($x) {
	
		return pow($x, 4) - 1;
	
	},
	$derivative_f = function($x) {

		return 4 * pow($x, 3);
	
	}, $eps = 1E-3) {

        $xa = $a;
        $xb = $b;

        $iteration = 0;

        while (abs($xb) > $eps) {

            $p1 = $f($xa);
            $q1 = $derivative_f($xa);
            $xa -= $p1 / $q1;
            $xb = $p1;
            ++$iteration;

        }

        return $xa;

}

Octave

function res = nt()
  eps = 1e-7;
  x0_1 = [-0.5,0.5];
  max_iter = 500;
  xopt = new(@resh, eps, max_iter);   
  xopt
endfunction
function a = new(f, eps, max_iter)
  x=-1;
  p0=1;
  i=0;
 while (abs(p0)>=eps)
    [p1,q1]=f(x);
    x=x-p1/q1;
   p0=p1;
   i=i+1;
 end
 i
 a=x;
endfunction
function[p,q]= resh(x)   % p= -5*x.^5+4*x.^4-12*x.^3+11*x.^2-2*x+1;
   p=-25*x.^4+16*x.^3-36*x.^2+22*x-2;
   q=-100*x.^3+48*x.^2-72*x+22;
endfunction

Delphi

// вычисляемая функция
function fx(x: Double): Double;
begin
  Result := x * x - 17;
end;

// производная функция от f(x)
function dfx(x: Double): Double;
begin
  Result := 2 * x;
end;

function solve(fx, dfx: TFunc<Double, Double>; x0: Double): Double;
const
  eps = 0.000001;
var
  x1: Double;
begin
  x1 := x0 - fx(x0) / dfx(x0); // первое приближение
  while (Abs(x1-x0) > eps) do begin // пока не достигнута точность 0.000001
    x0 := x1;
    x1 := x1 - fx(x1) / dfx(x1); // последующие приближения
  end;
  Result := x1;
end;

// Вызов
solve(fx, dfx,4));

C++

#include <stdio.h>
#include <math.h>

#define eps 0.000001
double fx(double x) { return x * x - 17;} // вычисляемая функция
double dfx(double x) { return 2 * x;} // производная функции

typedef double(*function)(double x); // задание типа function

double solve(function fx, function dfx, double x0) {
  double x1  = x0 - fx(x0) / dfx(x0); // первое приближение
  while (fabs(x1 - x0) > eps) { // пока не достигнута точность 0.000001
    x0 = x1;
    x1 = x0 - fx(x0) / dfx(x0); // последующие приближения
  }
  return x1;
}

int main () {
  printf("%f\n", solve(fx, dfx, 4)); // вывод на экран
  return 0;
}

C

typedef double (*function)(double x);

double TangentsMethod(function f, function df, double xn, double eps) {
   double x1  = xn - f(xn)/df(xn);
   double x0 = xn;
   while(abs(x0-x1) > eps) {
      x0 = x1;
      x1 = x1 - f(x1)/df(x1);
   }
   return x1;
}

//Выбор начального приближения
xn = MyFunction(A)*My2Derivative(A) > 0 ? B : A;

double MyFunction(double x) { return (pow(x, 5) - x - 0.2); } //Ваша функция
double MyDerivative(double x) { return (5*pow(x, 4) - 1); } //Первая производная
double My2Derivative(double x) { return (20*pow(x, 3)); } //Вторая производная

//Пример вызова функции
double x = TangentsMethod(MyFunction, MyDerivative, xn, 0.1)
import Data.List ( iterate' )

main :: IO ()
main = print $ solve (\ x -> x * x - 17) ( * 2) 4

-- Функция solve универсальна для всех вещественных типов значения которых можно сравнивать.
solve = esolve 0.000001

esolve epsilon func deriv x0 = fst . head $ dropWhile pred pairs
  where
    pred (xn, xn1) = (abs $ xn - xn1) > epsilon -- Функция pred определяет достигнута ли необходимая точность.
    next xn = xn - func xn / deriv xn -- Функция next вычисляет новое приближение.
    iters   = iterate' next x0        -- Бесконечный список итераций.
    pairs   = zip iters (tail iters)  -- Бесконечный список пар итераций вида: [(x0, x1), (x1, x2) ..].
!   Main program
    REAL*8:: Xbeg, F, D1F, error  ! Имена переменных в главной программе и подпрограмме могут отличаться    
    INTEGER  Niter, Ncalc         ! Xbeg - начальное значение, F - функция, D1F - её производная, error - остаточная ошибка
        ***                       ! Niter - заданное число итераций, Ncalc - число выполненных итераций до достижения погрешности
    CALL NEWTON(Xbeg, Niter, F, D1F, Ncalc, error)
        ***
C======================================================
    SUBROUTINE NEWTON(X0, Nmax, Func, D1Func, Nevl, rer) ! Простейший вариант устойчиво работающей программы для нахождения корня  без второй производной                                                               

	REAL*8:: X0, X1, XB, q, Func, D1Func, rer, eps       ! Итог вычисления будет записан в переменную Х0
	INTEGER  Nmax, Nevl
	
	IF(Nmax*(1000-Nmax).LE.0) Nmax=1000                 ! Защита от дурака
	                Nevl=1; XB=X0
	DO I=1, Nmax
	IF(Func(X0).EQ.0.)            EXIT
    IF(D1Func(X0).EQ.0.)          THEN
    Print *, 'Error from NEWTON: D1Func=', D1Func(X0), '  X=', X0, '  I=', I
                                  EXIT
    END IF                   
		
	X1=X0-Func(X0)/D1Func(X0) 
	
	q=abs(D1Func(X0));  q=abs(1.-q)/q
	eps=MAX(rer, epsilon(X0))                           ! epsilon(X0) - машинная точность; выбирается, если rer=0.
	IF(abs(X0-X1).LE.q*eps)       EXIT
	
	X0=X1
	END DO
    
    IF(abs(Func(X0)).GE.abs(Func(XB))) PAUSE 'Error from NEWTON: Change the X0!'

	If(I.ne.Nmax+1) Nevl=I
	If(I.eq.Nmax+1) Nevl=Nmax
	
	END SUBROUTINE

Литература

  • Акулич И. Л. Математическое программирование в примерах и задачах : Учеб. пособие для студентов эконом. спец. вузов. — М. : Высшая школа, 1986. — 319 с. : ил. — ББК 22.1 А44. — УДК 517.8(G).
  • Амосов А. А., Дубинский Ю. А., Копченова Н. П. Вычислительные методы для инженеров : Учеб. пособие. — М. : Высшая школа, 1994. — 544 с. : ил. — ББК 32.97 А62. — УДК 683.1(G). — ISBN 5-06-000625-5.
  • Бахвалов Н. С., Жидков Н. П., Кобельков Г. Г. Численные методы. — 8-е изд. — М. : Лаборатория Базовых Знаний, 2000.
  • Вавилов С. И. Исаак Ньютон. — М. : Изд. АН СССР, 1945.
  • Волков Е. А. Численные методы. — М. : Физматлит, 2003.
  • Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М. : Мир, 1985.
  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М. : Наука, 1970. — С. 575—576.
  • Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. — Энергоатомиздат, 1972.
  • Максимов Ю. А.,Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. — М. : МИФИ, 1982.
  • Морозов А. Д. Введение в теорию фракталов. — МИФИ, 2002.

См. также

Примечания

  1. Лукьяненко Д. В. - Численные методы - Лекция 1. Дата обращения: 11 марта 2024. Архивировано 11 марта 2024 года.
  2. Исаак Ньютон. Книга I. О движении тел. Отдел VI. Об определении движения по заданным орбитам // Математические начала натуральной философии / перевод с латинского и комментарии А.Н. Крылова, под редакцией Л.С. Полака. — Москва: URSS, 2017. — С. 156-158. — ISBN 978-5-9710-4231-0.

Ссылки

This information is adapted from Wikipedia which is publicly available.

Read other articles:

العلاقات الزيمبابوية الهايتية زيمبابوي هايتي   زيمبابوي   هايتي تعديل مصدري - تعديل   العلاقات الزيمبابوية الهايتية هي العلاقات الثنائية التي تجمع بين زيمبابوي وهايتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا…

بلوف سيتي   الإحداثيات 37°04′32″N 97°52′31″W / 37.0756°N 97.8753°W / 37.0756; -97.8753  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة هاربر، كانزاس  خصائص جغرافية  المساحة 1.398264 كيلومتر مربع1.398266 كيلومتر مربع (1 أبريل 2010)  ارتفاع 377 متر  عدد …

ЛюссаLussas Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Ларжантьєр Кантон Вільнев-де-Бер Код INSEE 07145 Поштові індекси 07170 Координати 44°36′46″ пн. ш. 4°28′25″ сх. д.H G O Висота 199 - 632 м.н.р.м. Площа 16,45 км² Населення 1154 (01-2020[1]) Густота 62,19 ос./к

Australische parlementsverkiezingen Datum 2 juli 2016 Land  Australië Te verdelen zetels 150 (Huis) + 76 (Senaat) Nieuwe minister-president Malcolm Turnbull Vorige minister-president Malcolm Turnbull Opvolging verkiezingen ← 2013     2019 → Portaal    Politiek Op 2 juli 2016 werden in Australië federale parlementsverkiezingen gehouden. De zittende eerste minister is Malcolm Turnbull, van de centrumrechtse liberaal-nationale coalitie. Het parlement werd ontbonden op…

American academic medical center Mayo ClinicTypePrivateIndustryHealth careFoundedJanuary 27, 1864; 159 years ago (1864-01-27)Rochester, Minnesota, U.S.HeadquartersRochester, Minnesota, U.S.Area served United States Phoenix/Scottsdale, Arizona Jacksonville, Florida United Kingdom London Key peopleGianrico Farrugia (CEO)[1][2]Michael Powell (Chairman)Revenue US$16.3 billion (2022)[3]: 13 Total assets US$20.305 billion (2021)[4]:…

Круглий бензель з крижем Бе́нзель (нід. benzel або від ниж.-нім. bensel)[1] — перев'язування двох тросів тонким тросом (лінем). Перев'язування, зроблене товстим тросом (двох рангоутних дерев, двох тросів, дерева з тросом, наприклад, між лапками нижніх штагів на топі щогли) нази

Comic Frontier, sebuah konvensi dōjinshi yang diadakan di Jakarta, Indonesia. Konvensi Dōjinshi adalah konvensi penggemar yang didedikasikan untuk penjualan dōjinshi, sebuah karya pribadi yang diterbitkan. Konvensi Dōjinshi yang biasanya disebut sebagai sokubaikai (即売会, secara harfiah acara penampilan dan penjualan) atau ibento (イベント, dari bahasa inggris event). Ribuan konvensi Dōjinshi berlangsung di Jepang setiap tahun, tapi konvensi dōjinshi juga diadakan di negara negara …

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Heiner Müller (Begriffsklärung) aufgeführt. Heiner Müller spricht bei der Alexanderplatz-Demonstration am 4. November 1989 Reimund Heiner Müller (* 9. Januar 1929 in Eppendorf, Amtshauptmannschaft Flöha, Sachsen; † 30. Dezember 1995 in Berlin), Pseudonym Max Messer, war ein deutscher Dramatiker. Er gilt als einer der wichtigsten deutschsprachigen Dramatiker der zweiten Hälfte des 20. Jahrhunderts und zählt zu den …

Pour un article plus général, voir Championnats d'Europe d'athlétisme. 200 mètres aux championnats d'Europe d'athlétisme Pietro Mennea remporte à deux reprises l'épreuve du 200 m.Généralités Sport Athlétisme200 mètres Organisateur(s) AEA Éditions 25e en 2022 Catégorie Championnats d'Europe Palmarès Tenant du titre Zharnel Hughes (2022)Mujinga Kambundji (2022) Plus titré(s) Pietro Mennea (2)Irena Szewinska, Irina Privalova et Dina Asher-Smith (2) Records Ramil Guliyev (19 s 7…

العلاقات الأوزبكستانية السورينامية أوزبكستان سورينام   أوزبكستان   سورينام تعديل مصدري - تعديل   العلاقات الأوزبكستانية السورينامية هي العلاقات الثنائية التي تجمع بين أوزبكستان وسورينام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعي…

24時間テレビ 「愛は地球を救う」 > 24時間テレビ 愛は地球を救う36 テレビ番組・中継内での各種情報(終了した番組・中継を含みます)は、DVDやBlu-rayなどでの販売や公式なネット配信、または信頼できる紙媒体またはウェブ媒体が紹介するまで、出典として用いないで下さい。検証可能性に基づき除去される場合があります。 この記事は検証可能な参考文献や出典…

Pandemi COVID-19 di MeghalayaPenyakitCOVID-19Galur virusSARS-CoV-2LokasiMeghalaya, IndiaKasus pertamaShillongTanggal kemunculan14 April 2020(3 tahun, 7 bulan, 2 minggu dan 1 hari)[1]AsalWuhan, Hubei, ChinaKasus terkonfirmasi44 (10 Juni 2020)Kasus dirawat17Kasus sembuh26 (14 Juni 2020)Kematian1 (15 April 2020)Tingkat kematian2.27%Situs web resmimeghealth.gov.in Kasus pertama pandemi COVID-19 di India dilaporkan pada 30 Januari 2020, bermula dari Tiongkok. Secara perlah…

Данный список представляет глав федерального министерства по охране окружающей среды Германии и учреждений, выполнявших соответствующие функции. Охватывает исторический период с момента основания министерства (в 1971-м в ГДР, и 1986-м в ФРГ) по настоящее время. Содержание 1 М…

Category 3 North Indian Cyclone in 2018 Extremely Severe Cyclonic Storm Mekunu Cyclone Mekunu near peak intensity and approaching Oman on May 25Meteorological historyFormedMay 21, 2018DissipatedMay 27, 2018Extremely severe cyclonic storm3-minute sustained (IMD)Highest winds175 km/h (110 mph)Lowest pressure960 hPa (mbar); 28.35 inHgCategory 3-equivalent tropical cyclone1-minute sustained (SSHWS/JTWC)Highest winds185 km/h (115 mph)Lowest pressure948 hPa…

Jacinto Benavente Jacinto Benavente y Martínez (* 12. August 1866 in Madrid; † 14. Juli 1954 ebenda) war ein spanischer Dramatiker und Journalist und Träger des Nobelpreises für Literatur 1922. Er gilt als Begründer des modernen spanischen Theaters. Inhaltsverzeichnis 1 Leben 2 Werke (Auswahl) 3 Literatur 4 Weblinks 5 Einzelnachweise Leben Jacinto Benavente begann ein Jurastudium in Madrid, das er aber nach dem Tod seines als Arzt bekannten Vaters abbrach. Stattdessen unternahm er ausgedeh…

Vampire IdolPoster promosi untuk Vampire IdolGenreKomedi, DramaDitulis olehHa Chul-song Lee Sung-eun Park Ji-hyun Park Ran Park Yeon-kyung Choi Yoon-chulSutradaraLee Geun-wookYoo Yong-heeBaek Seung-jooPemeranLee JungKang Min-kyungShin Dong-yupKim Soo-miLee Soo-hyukKim Woo-binHong Jong-hyunNegara asalKorea SelatanBahasa asliKoreaJmlh. episode79ProduksiDurasiSenin sampai Jumat pukul 12:30 (WSK)Rumah produksiSidusHQRilisJaringan asliMaeil Broadcasting NetworkRilis asli05 Desember 2011 (2011-12…

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Psychostick discography – news · newspapers · books · scholar · JSTOR (March 2018)Psychostick discographyStudio albums5Video albums1Music videos7EPs3Singles12Demos2 The following is the complete discography of official releases by Psychostick. Psychostic…

Jalur kereta api Pulau Aie–Padang PanjangJembatan parabola yang menjadi ciri khas Divre II Sumatera Barat, berada di kawasan Lembah Anai.IkhtisarJenisJalur lintas utamaSistemJalur kereta api rel beratStatusBeroperasiLokasiKota Padang dan Kabupaten Padang Pariaman, Sumatera BaratTerminusBukit PutusPulau AieBandara MinangkabauLubuk AlungStasiun10 (termasuk stasiun percabangan)OperasiDibangun olehStaatsspoorwegen ter Sumatra's WestkustDirektorat Jenderal Perkeretaapian (percabangan BIM)Dibuka1887…

Fictional character This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article describes a work or element of fiction in a primarily in-universe style. Please help rewrite it to explain the fiction more clearly and provide non-fictional perspective. (November 2017) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help imp…

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (August 2018) (Learn how and when to remove this template message) Dominican Red Cross (Spanish: Cruz Roja Dominicana; CRD) was founded in 1927.[1] Activities performed include the distribution of aid following disas…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.145.152.16