Математические операторы

Математические операторы
англ. Mathematical Operators
Диапазон 2200—22FF
(256 кодовых позиций)
Плоскость BMP
Письменности Общая
Основные алфавиты Математические символы
Логические и множественные операторы
Символы отношений
Кодовые позиции
Задействовано 256 кодовых позиций
Зарезервировано 0 кодовых позиций
История изменений символов в Юникоде
1.0.0 242 (+242)
3.2 256 (+14)
Примечания: [1][2]
Официальный документ Юникода

Математические операторы (англ. Mathematical Operators) — блок стандарта Юникод. Содержит символы для математической, логической и множественной записи.

Знаки плюс (+), минус (-), равно (=), больше (>) и меньше (<) чем имеются в блоке Основная латиница. А знаки плюс-минус (±), умножение (×) и деление (÷) имеются в блоке Дополнение к латинице — 1. Для отделения от дефиса решили добавить отдельный знак минуса в позиции U+2212 (−).

Список символов

Код Символ Название Характеристики в Юникоде Версия,
в которой
был
добавлен
символ
HTML
Категория
символа
Класс комбини-
руемости
Класс
направ-
ления
Тип
разрыва
строки
Мнемо-
ника
16-чный 10-чный
U+2200 for all Sm 0 ON AI 1.0.0 (1991) &forall; &#x2200; &#8704;
U+2201 complement Sm 0 ON AL 1.0.0 (1991) &complement; &#x2201; &#8705;
U+2202 partial differential Sm 0 ON AI 1.0.0 (1991) &part; &#x2202; &#8706;
U+2203 there exists Sm 0 ON AI 1.0.0 (1991) &exist; &#x2203; &#8707;
U+2204 there does not exist Sm 0 ON AL 1.0.0 (1991) &NotExists; &#x2204; &#8708;
U+2205 empty set Sm 0 ON AL 1.0.0 (1991) &varnothing; &#x2205; &#8709;
U+2206 increment Sm 0 ON AL 1.0.0 (1991) &#x2206; &#8710;
U+2207 nabla Sm 0 ON AI 1.0.0 (1991) &nabla; &#x2207; &#8711;
U+2208 element of Sm 0 ON AI 1.0.0 (1991) &isinv; &#x2208; &#8712;
U+2209 not an element of Sm 0 ON AL 1.0.0 (1991) &NotElement; &#x2209; &#8713;
U+220A small element of Sm 0 ON AL 1.0.0 (1991) &#x220A; &#8714;
U+220B contains as member Sm 0 ON AI 1.0.0 (1991) &ReverseElement; &#x220B; &#8715;
U+220C does not contain as member Sm 0 ON AL 1.0.0 (1991) &NotReverseElement; &#x220C; &#8716;
U+220D small contains as member Sm 0 ON AL 1.0.0 (1991) &#x220D; &#8717;
U+220E end of proof Sm 0 ON AL 1.0.0 (1991) &#x220E; &#8718;
U+220F n-ary product Sm 0 ON AI 1.0.0 (1991) &prod; &#x220F; &#8719;
U+2210 n-ary coproduct Sm 0 ON AL 1.0.0 (1991) &Coproduct; &#x2210; &#8720;
U+2211 n-ary summation Sm 0 ON AI 1.0.0 (1991) &sum; &#x2211; &#8721;
U+2212 minus sign Sm 0 ES PR 1.0.0 (1991) &minus; &#x2212; &#8722;
U+2213 minus-or-plus sign Sm 0 ET PR 1.0.0 (1991) &mp; &#x2213; &#8723;
U+2214 dot plus Sm 0 ON AL 1.0.0 (1991) &plusdo; &#x2214; &#8724;
U+2215 division slash Sm 0 ON AI 1.0.0 (1991) &#x2215; &#8725;
U+2216 set minus Sm 0 ON AL 1.0.0 (1991) &smallsetminus; &#x2216; &#8726;
U+2217 asterisk operator Sm 0 ON AL 1.0.0 (1991) &lowast; &#x2217; &#8727;
U+2218 ring operator Sm 0 ON AL 1.0.0 (1991) &SmallCircle; &#x2218; &#8728;
U+2219 bullet operator Sm 0 ON AL 1.0.0 (1991) &#x2219; &#8729;
U+221A square root Sm 0 ON AI 1.0.0 (1991) &Sqrt; &#x221A; &#8730;
U+221B cube root Sm 0 ON AL 1.0.0 (1991) &#x221B; &#8731;
U+221C fourth root Sm 0 ON AL 1.0.0 (1991) &#x221C; &#8732;
U+221D proportional to Sm 0 ON AI 1.0.0 (1991) &Proportional; &#x221D; &#8733;
U+221E infinity Sm 0 ON AI 1.0.0 (1991) &infin; &#x221E; &#8734;
U+221F right angle Sm 0 ON AI 1.0.0 (1991) &angrt; &#x221F; &#8735;
U+2220 angle Sm 0 ON AI 1.0.0 (1991) &angle; &#x2220; &#8736;
U+2221 measured angle Sm 0 ON AL 1.0.0 (1991) &measuredangle; &#x2221; &#8737;
U+2222 spherical angle Sm 0 ON AL 1.0.0 (1991) &angsph; &#x2222; &#8738;
U+2223 divides Sm 0 ON AI 1.0.0 (1991) &VerticalBar; &#x2223; &#8739;
U+2224 does not divide Sm 0 ON AL 1.0.0 (1991) &NotVerticalBar; &#x2224; &#8740;
U+2225 parallel to Sm 0 ON AI 1.0.0 (1991) &shortparallel; &#x2225; &#8741;
U+2226 not parallel to Sm 0 ON AL 1.0.0 (1991) &NotDoubleVerticalBar; &#x2226; &#8742;
U+2227 logical and Sm 0 ON AI 1.0.0 (1991) &wedge; &#x2227; &#8743;
U+2228 logical or Sm 0 ON AI 1.0.0 (1991) &vee; &#x2228; &#8744;
U+2229 intersection Sm 0 ON AI 1.0.0 (1991) &cap; &#x2229; &#8745;
U+222A union Sm 0 ON AI 1.0.0 (1991) &cup; &#x222A; &#8746;
U+222B integral Sm 0 ON AI 1.0.0 (1991) &int; &#x222B; &#8747;
U+222C double integral Sm 0 ON AI 1.0.0 (1991) &Int; &#x222C; &#8748;
U+222D triple integral Sm 0 ON AL 1.0.0 (1991) &tint; &#x222D; &#8749;
U+222E contour integral Sm 0 ON AI 1.0.0 (1991) &ContourIntegral; &#x222E; &#8750;
U+222F surface integral Sm 0 ON AL 1.0.0 (1991) &DoubleContourIntegral; &#x222F; &#8751;
U+2230 volume integral Sm 0 ON AL 1.0.0 (1991) &Cconint; &#x2230; &#8752;
U+2231 clockwise integral Sm 0 ON AL 1.0.0 (1991) &cwint; &#x2231; &#8753;
U+2232 clockwise contour integral Sm 0 ON AL 1.0.0 (1991) &ClockwiseContourIntegral; &#x2232; &#8754;
U+2233 anticlockwise contour integral Sm 0 ON AL 1.0.0 (1991) &CounterClockwiseContourIntegral; &#x2233; &#8755;
U+2234 therefore Sm 0 ON AI 1.0.0 (1991) &therefore; &#x2234; &#8756;
U+2235 because Sm 0 ON AI 1.0.0 (1991) &because; &#x2235; &#8757;
U+2236 ratio Sm 0 ON AI 1.0.0 (1991) &ratio; &#x2236; &#8758;
U+2237 proportion Sm 0 ON AI 1.0.0 (1991) &Proportion; &#x2237; &#8759;
U+2238 dot minus Sm 0 ON AL 1.0.0 (1991) &dotminus; &#x2238; &#8760;
U+2239 excess Sm 0 ON AL 1.0.0 (1991) &#x2239; &#8761;
U+223A geometric proportion Sm 0 ON AL 1.0.0 (1991) &mDDot; &#x223A; &#8762;
U+223B homothetic Sm 0 ON AL 1.0.0 (1991) &homtht; &#x223B; &#8763;
U+223C tilde operator Sm 0 ON AI 1.0.0 (1991) &Tilde; &#x223C; &#8764;
U+223D reversed tilde Sm 0 ON AI 1.0.0 (1991) &bsim; &#x223D; &#8765;
U+223E inverted lazy s Sm 0 ON AL 1.0.0 (1991) &ac; &#x223E; &#8766;
U+223F sine wave Sm 0 ON AL 1.0.0 (1991) &acd; &#x223F; &#8767;
U+2240 wreath product Sm 0 ON AL 1.0.0 (1991) &VerticalTilde; &#x2240; &#8768;
U+2241 not tilde Sm 0 ON AL 1.0.0 (1991) &nsim; &#x2241; &#8769;
U+2242 minus tilde Sm 0 ON AL 1.0.0 (1991) &EqualTilde; &#x2242; &#8770;
U+2243 asymptotically equal to Sm 0 ON AL 1.0.0 (1991) &TildeEqual; &#x2243; &#8771;
U+2244 not asymptotically equal to Sm 0 ON AL 1.0.0 (1991) &NotTildeEqual; &#x2244; &#8772;
U+2245 approximately equal to Sm 0 ON AL 1.0.0 (1991) &TildeFullEqual; &#x2245; &#8773;
U+2246 approximately but equal to Sm 0 ON AL 1.0.0 (1991) &simne; &#x2246; &#8774;
U+2247 neither approximately not actually equal to Sm 0 ON AL 1.0.0 (1991) &NotTildeFullEqual; &#x2247; &#8775;
U+2248 almost equal to Sm 0 ON AI 1.0.0 (1991) &thickapprox; &#x2248; &#8776;
U+2249 not almost equal to Sm 0 ON AL 1.0.0 (1991) &NotTildeTilde; &#x2249; &#8777;
U+224A almost equal or equal to Sm 0 ON AL 1.0.0 (1991) &ape; &#x224A; &#8778;
U+224B triple tilde Sm 0 ON AL 1.0.0 (1991) &apid; &#x224B; &#8779;
U+224C all equal to Sm 0 ON AI 1.0.0 (1991) &bcong; &#x224C; &#8780;
U+224D equivalent to Sm 0 ON AL 1.0.0 (1991) &CupCap; &#x224D; &#8781;
U+224E geometrically equivalent to Sm 0 ON AL 1.0.0 (1991) &HumpDownHump; &#x224E; &#8782;
U+224F difference between Sm 0 ON AL 1.0.0 (1991) &bumpe; &#x224F; &#8783;
U+2250 approaches the limit Sm 0 ON AL 1.0.0 (1991) &esdot; &#x2250; &#8784;
U+2251 geometrically equal to Sm 0 ON AL 1.0.0 (1991) &eDot; &#x2251; &#8785;
U+2252 approximately equal to or the image of Sm 0 ON AI 1.0.0 (1991) &fallingdotseq; &#x2252; &#8786;
U+2253 image of or approximately equal to Sm 0 ON AL 1.0.0 (1991) &risingdotseq; &#x2253; &#8787;
U+2254 colon equals Sm 0 ON AL 1.0.0 (1991) &coloneq; &#x2254; &#8788;
U+2255 equals colon Sm 0 ON AL 1.0.0 (1991) &eqcolon; &#x2255; &#8789;
U+2256 ring in equal to Sm 0 ON AL 1.0.0 (1991) &ecir; &#x2256; &#8790;
U+2257 ring equal to Sm 0 ON AL 1.0.0 (1991) &cire; &#x2257; &#8791;
U+2258 corresponds to Sm 0 ON AL 1.0.0 (1991) &#x2258; &#8792;
U+2259 estimates Sm 0 ON AL 1.0.0 (1991) &wedgeq; &#x2259; &#8793;
U+225A equiangular to Sm 0 ON AL 1.0.0 (1991) &veeeq; &#x225A; &#8794;
U+225B star equals Sm 0 ON AL 1.0.0 (1991) &#x225B; &#8795;
U+225C delta equal to Sm 0 ON AL 1.0.0 (1991) &trie; &#x225C; &#8796;
U+225D equal to by definition Sm 0 ON AL 1.0.0 (1991) &#x225D; &#8797;
U+225E measured by Sm 0 ON AL 1.0.0 (1991) &#x225E; &#8798;
U+225F questioned equal to Sm 0 ON AL 1.0.0 (1991) &questeq; &#x225F; &#8799;
U+2260 not equal to Sm 0 ON AI 1.0.0 (1991) &ne; &#x2260; &#8800;
U+2261 identical to Sm 0 ON AI 1.0.0 (1991) &equiv; &#x2261; &#8801;
U+2262 not identical to Sm 0 ON AL 1.0.0 (1991) &NotCongruent; &#x2262; &#8802;
U+2263 strictly identical to Sm 0 ON AL 1.0.0 (1991) &#x2263; &#8803;
U+2264 less-than or equal to Sm 0 ON AI 1.0.0 (1991) &leq; &#x2264; &#8804;
U+2265 greater-than or equal to Sm 0 ON AI 1.0.0 (1991) &GreaterEqual; &#x2265; &#8805;
U+2266 less-than over equal to Sm 0 ON AI 1.0.0 (1991) &LessFullEqual; &#x2266; &#8806;
U+2267 greater-than over equal to Sm 0 ON AI 1.0.0 (1991) &GreaterFullEqual; &#x2267; &#8807;
U+2268 less-than but not equal to Sm 0 ON AL 1.0.0 (1991) &lneqq; &#x2268; &#8808;
U+2269 greater-than but not equal to Sm 0 ON AL 1.0.0 (1991) &gneqq; &#x2269; &#8809;
U+226A much less-than Sm 0 ON AI 1.0.0 (1991) &NestedLessLess; &#x226A; &#8810;
U+226B much greater-than Sm 0 ON AI 1.0.0 (1991) &NestedGreaterGreater; &#x226B; &#8811;
U+226C between Sm 0 ON AL 1.0.0 (1991) &twixt; &#x226C; &#8812;
U+226D not equivalent to Sm 0 ON AL 1.0.0 (1991) &NotCupCap; &#x226D; &#8813;
U+226E not less-than Sm 0 ON AI 1.0.0 (1991) &nlt; &#x226E; &#8814;
U+226F not greater-than Sm 0 ON AI 1.0.0 (1991) &NotGreater; &#x226F; &#8815;
U+2270 neither less-than nor equal to Sm 0 ON AL 1.0.0 (1991) &NotLessEqual; &#x2270; &#8816;
U+2271 neither greater-than nor equal to Sm 0 ON AL 1.0.0 (1991) &NotGreaterEqual; &#x2271; &#8817;
U+2272 less-than or equivalent to Sm 0 ON AL 1.0.0 (1991) &lsim; &#x2272; &#8818;
U+2273 greater-than or equivalent to Sm 0 ON AL 1.0.0 (1991) &GreaterTilde; &#x2273; &#8819;
U+2274 neither less-than nor equivalent to Sm 0 ON AL 1.0.0 (1991) &NotLessTilde; &#x2274; &#8820;
U+2275 neither greater-than nor equivalent to Sm 0 ON AL 1.0.0 (1991) &NotGreaterTilde; &#x2275; &#8821;
U+2276 less-than or greater-than Sm 0 ON AL 1.0.0 (1991) &LessGreater; &#x2276; &#8822;
U+2277 greater-than or less than Sm 0 ON AL 1.0.0 (1991) &GreaterLess; &#x2277; &#8823;
U+2278 neither less-than nor greater-than Sm 0 ON AL 1.0.0 (1991) &NotLessGreater; &#x2278; &#8824;
U+2279 neither greater-than nor less than Sm 0 ON AL 1.0.0 (1991) &NotGreaterLess; &#x2279; &#8825;
U+227A precedes Sm 0 ON AL 1.0.0 (1991) &prec; &#x227A; &#8826;
U+227B succeeds Sm 0 ON AL 1.0.0 (1991) &succ; &#x227B; &#8827;
U+227C precedes or equal to Sm 0 ON AL 1.0.0 (1991) &PrecedesSlantEqual; &#x227C; &#8828;
U+227D succeeds or equal to Sm 0 ON AL 1.0.0 (1991) &SucceedsSlantEqual; &#x227D; &#8829;
U+227E precedes or equivalent to Sm 0 ON AL 1.0.0 (1991) &PrecedesTilde; &#x227E; &#8830;
U+227F succeeds or equivalent to Sm 0 ON AL 1.0.0 (1991) &SucceedsTilde; &#x227F; &#8831;
U+2280 does not precede Sm 0 ON AL 1.0.0 (1991) &NotPrecedes; &#x2280; &#8832;
U+2281 does not succeed Sm 0 ON AL 1.0.0 (1991) &NotSucceeds; &#x2281; &#8833;
U+2282 subset of Sm 0 ON AI 1.0.0 (1991) &sub; &#x2282; &#8834;
U+2283 superset of Sm 0 ON AI 1.0.0 (1991) &sup; &#x2283; &#8835;
U+2284 not a subset of Sm 0 ON AL 1.0.0 (1991) &nsub; &#x2284; &#8836;
U+2285 not a superset of Sm 0 ON AL 1.0.0 (1991) &nsup; &#x2285; &#8837;
U+2286 subset of or equal to Sm 0 ON AI 1.0.0 (1991) &SubsetEqual; &#x2286; &#8838;
U+2287 superset of or equal to Sm 0 ON AI 1.0.0 (1991) &SupersetEqual; &#x2287; &#8839;
U+2288 neither a subset of nor equal to Sm 0 ON AL 1.0.0 (1991) &NotSubsetEqual; &#x2288; &#8840;
U+2289 neither a superset of nor equal to Sm 0 ON AL 1.0.0 (1991) &NotSupersetEqual; &#x2289; &#8841;
U+228A subset of with not equal to Sm 0 ON AL 1.0.0 (1991) &subne; &#x228A; &#8842;
U+228B superset of with not equal to Sm 0 ON AL 1.0.0 (1991) &supne; &#x228B; &#8843;
U+228C multiset Sm 0 ON AL 1.0.0 (1991) &#x228C; &#8844;
U+228D multiset multiplication Sm 0 ON AL 1.0.0 (1991) &cupdot; &#x228D; &#8845;
U+228E multiset union Sm 0 ON AL 1.0.0 (1991) &uplus; &#x228E; &#8846;
U+228F square image of Sm 0 ON AL 1.0.0 (1991) &SquareSubset; &#x228F; &#8847;
U+2290 square original of Sm 0 ON AL 1.0.0 (1991) &SquareSuperset; &#x2290; &#8848;
U+2291 square image of or equal to Sm 0 ON AL 1.0.0 (1991) &sqsubseteq; &#x2291; &#8849;
U+2292 square original of or equal to Sm 0 ON AL 1.0.0 (1991) &SquareSupersetEqual; &#x2292; &#8850;
U+2293 square cap Sm 0 ON AL 1.0.0 (1991) &SquareIntersection; &#x2293; &#8851;
U+2294 square cup Sm 0 ON AL 1.0.0 (1991) &SquareUnion; &#x2294; &#8852;
U+2295 circled plus Sm 0 ON AI 1.0.0 (1991) &CirclePlus; &#x2295; &#8853;
U+2296 circled minus Sm 0 ON AL 1.0.0 (1991) &CircleMinus; &#x2296; &#8854;
U+2297 circled times Sm 0 ON AL 1.0.0 (1991) &CircleTimes; &#x2297; &#8855;
U+2298 circled division slash Sm 0 ON AL 1.0.0 (1991) &osol; &#x2298; &#8856;
U+2299 circled dot operator Sm 0 ON AI 1.0.0 (1991) &osot; &#x2299; &#8857;
U+229A circled ring operator Sm 0 ON AL 1.0.0 (1991) &circledcirc; &#x229A; &#8858;
U+229B circled asterisk operator Sm 0 ON AL 1.0.0 (1991) &circledast; &#x229B; &#8859;
U+229C circled equals Sm 0 ON AL 1.0.0 (1991) &#x229C; &#8860;
U+229D circled dash Sm 0 ON AL 1.0.0 (1991) &circleddash; &#x229D; &#8861;
U+229E squared plus Sm 0 ON AL 1.0.0 (1991) &plusb; &#x229E; &#8862;
U+229F squared minus Sm 0 ON AL 1.0.0 (1991) &boxminus; &#x229F; &#8863;
U+22A0 squared times Sm 0 ON AL 1.0.0 (1991) &boxtimes; &#x22A0; &#8864;
U+22A1 squared dot operator Sm 0 ON AL 1.0.0 (1991) &sdotb; &#x22A1; &#8865;
U+22A2 right tack Sm 0 ON AL 1.0.0 (1991) &vdash; &#x22A2; &#8866;
U+22A3 left tack Sm 0 ON AL 1.0.0 (1991) &dashv; &#x22A3; &#8867;
U+22A4 down tack Sm 0 ON AL 1.0.0 (1991) &top; &#x22A4; &#8868;
U+22A5 up tack Sm 0 ON AI 1.0.0 (1991) &UpTee; &#x22A5; &#8869;
U+22A6 assertion Sm 0 ON AL 1.0.0 (1991) &#x22A6; &#8870;
U+22A7 models Sm 0 ON AL 1.0.0 (1991) &models; &#x22A7; &#8871;
U+22A8 true Sm 0 ON AL 1.0.0 (1991) &DoubleRightTee; &#x22A8; &#8872;
U+22A9 forces Sm 0 ON AL 1.0.0 (1991) &Vdash; &#x22A9; &#8873;
U+22AA triple vertical bar right turnstile Sm 0 ON AL 1.0.0 (1991) &Vvdash; &#x22AA; &#8874;
U+22AB double vertical bar double right turnstile Sm 0 ON AL 1.0.0 (1991) &VDash; &#x22AB; &#8875;
U+22AC does not prove Sm 0 ON AL 1.0.0 (1991) &nvdash; &#x22AC; &#8876;
U+22AD not true Sm 0 ON AL 1.0.0 (1991) &nvDash; &#x22AD; &#8877;
U+22AE does not force Sm 0 ON AL 1.0.0 (1991) &nVdash; &#x22AE; &#8878;
U+22AF negated double vertical bar double right turnstile Sm 0 ON AL 1.0.0 (1991) &nVDash; &#x22AF; &#8879;
U+22B0 precedes under relation Sm 0 ON AL 1.0.0 (1991) &prurel; &#x22B0; &#8880;
U+22B1 succeeds under relation Sm 0 ON AL 1.0.0 (1991) &#x22B1; &#8881;
U+22B2 normal subgroup of Sm 0 ON AL 1.0.0 (1991) &LeftTriangle; &#x22B2; &#8882;
U+22B3 contains as normal subgroup Sm 0 ON AL 1.0.0 (1991) &RightTriangle; &#x22B3; &#8883;
U+22B4 normal subgroup of or equal to Sm 0 ON AL 1.0.0 (1991) &LeftTriangleEqual; &#x22B4; &#8884;
U+22B5 contains as normal subgroup or equal to Sm 0 ON AL 1.0.0 (1991) &RightTriangleEqual; &#x22B5; &#8885;
U+22B6 original of Sm 0 ON AL 1.0.0 (1991) &origof; &#x22B6; &#8886;
U+22B7 image of Sm 0 ON AL 1.0.0 (1991) &imof; &#x22B7; &#8887;
U+22B8 multimap Sm 0 ON AL 1.0.0 (1991) &mumap; &#x22B8; &#8888;
U+22B9 hermitian conjugate matrix Sm 0 ON AL 1.0.0 (1991) &hercon; &#x22B9; &#8889;
U+22BA intercalate Sm 0 ON AL 1.0.0 (1991) &intercal; &#x22BA; &#8890;
U+22BB xor Sm 0 ON AL 1.0.0 (1991) &veebar; &#x22BB; &#8891;
U+22BC nand Sm 0 ON AL 1.0.0 (1991) &#x22BC; &#8892;
U+22BD nor Sm 0 ON AL 1.0.0 (1991) &barvee; &#x22BD; &#8893;
U+22BE right angle with arc Sm 0 ON AL 1.0.0 (1991) &angrtvb; &#x22BE; &#8894;
U+22BF right triangle Sm 0 ON AI 1.0.0 (1991) &lrtri; &#x22BF; &#8895;
U+22C0 n-ary logical and Sm 0 ON AL 1.0.0 (1991) &Wedge; &#x22C0; &#8896;
U+22C1 n-ary logical or Sm 0 ON AL 1.0.0 (1991) &xvee; &#x22C1; &#8897;
U+22C2 n-ary intersection Sm 0 ON AL 1.0.0 (1991) &Intersection; &#x22C2; &#8898;
U+22C3 n-ary union Sm 0 ON AL 1.0.0 (1991) &xcup; &#x22C3; &#8899;
U+22C4 diamond operator Sm 0 ON AL 1.0.0 (1991) &diam; &#x22C4; &#8900;
U+22C5 dot operator Sm 0 ON AL 1.0.0 (1991) &sdot; &#x22C5; &#8901;
U+22C6 star operator Sm 0 ON AL 1.0.0 (1991) &Star; &#x22C6; &#8902;
U+22C7 division times Sm 0 ON AL 1.0.0 (1991) &divideontimes; &#x22C7; &#8903;
U+22C8 bowtie Sm 0 ON AL 1.0.0 (1991) &bowtie; &#x22C8; &#8904;
U+22C9 left normal factor semidirect product Sm 0 ON AL 1.0.0 (1991) &ltimes; &#x22C9; &#8905;
U+22CA right normal factor semidirect product Sm 0 ON AL 1.0.0 (1991) &rtimes; &#x22CA; &#8906;
U+22CB left semidirect product Sm 0 ON AL 1.0.0 (1991) &leftthreetimes; &#x22CB; &#8907;
U+22CC right semidirect product Sm 0 ON AL 1.0.0 (1991) &rightthreetimes; &#x22CC; &#8908;
U+22CD reversed tilde equals Sm 0 ON AL 1.0.0 (1991) &bsime; &#x22CD; &#8909;
U+22CE curly logical or Sm 0 ON AL 1.0.0 (1991) &cuvee; &#x22CE; &#8910;
U+22CF curly logical and Sm 0 ON AL 1.0.0 (1991) &curlywedge; &#x22CF; &#8911;
U+22D0 double subset Sm 0 ON AL 1.0.0 (1991) &Sub; &#x22D0; &#8912;
U+22D1 double superset Sm 0 ON AL 1.0.0 (1991) &Sup; &#x22D1; &#8913;
U+22D2 double intersection Sm 0 ON AL 1.0.0 (1991) &Cap; &#x22D2; &#8914;
U+22D3 double union Sm 0 ON AL 1.0.0 (1991) &Cup; &#x22D3; &#8915;
U+22D4 pitchfork Sm 0 ON AL 1.0.0 (1991) &fork; &#x22D4; &#8916;
U+22D5 equal and parallel to Sm 0 ON AL 1.0.0 (1991) &epar; &#x22D5; &#8917;
U+22D6 less-than with dot Sm 0 ON AL 1.0.0 (1991) &ltdot; &#x22D6; &#8918;
U+22D7 greater-than with dot Sm 0 ON AL 1.0.0 (1991) &gtdot; &#x22D7; &#8919;
U+22D8 very much less-than Sm 0 ON AL 1.0.0 (1991) &Ll; &#x22D8; &#8920;
U+22D9 very much greater-than Sm 0 ON AL 1.0.0 (1991) &ggg; &#x22D9; &#8921;
U+22DA less-than equal to or greater-than Sm 0 ON AL 1.0.0 (1991) &LessEqualGreater; &#x22DA; &#8922;
U+22DB greater-than equal to or less-than Sm 0 ON AL 1.0.0 (1991) &GreaterEqualLess; &#x22DB; &#8923;
U+22DC equal to or less-than Sm 0 ON AL 1.0.0 (1991) &#x22DC; &#8924;
U+22DD equal to or greater-than Sm 0 ON AL 1.0.0 (1991) &#x22DD; &#8925;
U+22DE equal to or precedes Sm 0 ON AL 1.0.0 (1991) &curlyeqprec; &#x22DE; &#8926;
U+22DF equal to or succeeds Sm 0 ON AL 1.0.0 (1991) &curlyeqsucc; &#x22DF; &#8927;
U+22E0 does not precede or equal to Sm 0 ON AL 1.0.0 (1991) &NotPrecedesSlantEqual; &#x22E0; &#8928;
U+22E1 does not succeed or equal to Sm 0 ON AL 1.0.0 (1991) &NotSucceedsSlantEqual; &#x22E1; &#8929;
U+22E2 not square image of or equal to Sm 0 ON AL 1.0.0 (1991) &NotSquareSubsetEqual; &#x22E2; &#8930;
U+22E3 not square original of or equal to Sm 0 ON AL 1.0.0 (1991) &NotSquareSupersetEqual; &#x22E3; &#8931;
U+22E4 square image of or not equal to Sm 0 ON AL 1.0.0 (1991) &#x22E4; &#8932;
U+22E5 square original of or not equal to Sm 0 ON AL 1.0.0 (1991) &#x22E5; &#8933;
U+22E6 less-than but not equivalent to Sm 0 ON AL 1.0.0 (1991) &lnsim; &#x22E6; &#8934;
U+22E7 greater-than but not equivalent to Sm 0 ON AL 1.0.0 (1991) &gnsim; &#x22E7; &#8935;
U+22E8 precedes but not equivalent to Sm 0 ON AL 1.0.0 (1991) &precnsim; &#x22E8; &#8936;
U+22E9 succeeds but not equivalent to Sm 0 ON AL 1.0.0 (1991) &succnsim; &#x22E9; &#8937;
U+22EA not normal subgroup of Sm 0 ON AL 1.0.0 (1991) &ntriangleleft; &#x22EA; &#8938;
U+22EB does not contain as normal subgroup Sm 0 ON AL 1.0.0 (1991) &NotRightTriangle; &#x22EB; &#8939;
U+22EC normal subgroup of or equal to Sm 0 ON AL 1.0.0 (1991) &NotLeftTriangleEqual; &#x22EC; &#8940;
U+22ED contains as normal subgroup or equal to Sm 0 ON AL 1.0.0 (1991) &NotRightTriangleEqual; &#x22ED; &#8941;
U+22EE vertical ellipsis Sm 0 ON AL 1.0.0 (1991) &vellip; &#x22EE; &#8942;
U+22EF middle horizontal ellipsis Sm 0 ON IN 1.0.0 (1991) &ctdot; &#x22EF; &#8943;
U+22F0 up right diagonal ellipsis Sm 0 ON AL 1.0.0 (1991) &utdot; &#x22F0; &#8944;
U+22F1 down right diagonal ellipsis Sm 0 ON AL 1.0.0 (1991) &dtdot; &#x22F1; &#8945;
U+22F2 element of with long horizontal stroke Sm 0 ON AL 3.2 (2002) &disin; &#x22F2; &#8946;
U+22F3 element of with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 (2002) &isinsv; &#x22F3; &#8947;
U+22F4 small element of with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 (2002) &isins; &#x22F4; &#8948;
U+22F5 element of with dot above Sm 0 ON AL 3.2 (2002) &isindot; &#x22F5; &#8949;
U+22F6 element of with overbar Sm 0 ON AL 3.2 (2002) &notinvc; &#x22F6; &#8950;
U+22F7 small element of with overbar Sm 0 ON AL 3.2 (2002) &notinvb; &#x22F7; &#8951;
U+22F8 element of with underbar Sm 0 ON AL 3.2 (2002) &#x22F8; &#8952;
U+22F9 element of with two horizontal strokes Sm 0 ON AL 3.2 (2002) &isinE; &#x22F9; &#8953;
U+22FA contains with long horizontal stroke Sm 0 ON AL 3.2 (2002) &nisd; &#x22FA; &#8954;
U+22FB contains with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 (2002) &xnis; &#x22FB; &#8955;
U+22FC small contains with vertical bar at end of horizontal stroke Sm 0 ON AL 3.2 (2002) &nis; &#x22FC; &#8956;
U+22FD contains with overbar Sm 0 ON AL 3.2 (2002) &notnivc; &#x22FD; &#8957;
U+22FE small contains with overbar Sm 0 ON AL 3.2 (2002) &notnivb; &#x22FE; &#8958;
U+22FF z notation bag membership Sm 0 ON AL 3.2 (2002) &#x22FF; &#8959;

Компактная таблица

Математические операторы[1]
Официальная таблица символов Консорциума Юникода (PDF)
  0 1 2 3 4 5 6 7 8 9 A B C D E F
U+220x
U+221x
U+222x
U+223x
U+224x
U+225x
U+226x
U+227x
U+228x
U+229x
U+22Ax
U+22Bx
U+22Cx
U+22Dx
U+22Ex
U+22Fx
Примечания
1.^ По состоянию на версию 15.0.

История

В таблице указаны документы, отражающие процесс формирования блока.

См. также

Примечания

  1. Unicode character database. The Unicode Standard. Дата обращения: 30 января 2017. Архивировано 25 декабря 2018 года.
  2. Enumerated Versions of The Unicode Standard. The Unicode Standard. Дата обращения: 30 января 2017. Архивировано 25 декабря 2018 года.

Read other articles:

Order of birds ApodiformesTemporal range: Late Paleocene to present Bee hummingbird (Mellisuga helenae), the smallest bird in the World Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Clade: Strisores Clade: Daedalornithes Order: ApodiformesPeters, 1940 Families †Aegialornithidae †Cypselavidae †Eocypselidae †Jungornithidae Apodidae Hemiprocnidae Trochilidae Range of the swifts and hummingbirds. Synonyms Trochiliformes Wagler, 1830 Traditional...

 

Untuk lagu Scarling., lihat Crispin Glover (lagu). Crispin GloverGlover pada April 2012Lahir20 April 1964 (umur 59)New York City, New York, ASTempat tinggalLos Angeles, California, ASRepublik CekoPekerjaanAktor, sutradaraTahun aktif1977–sekarangSitus webcrispinglover.com Crispin Hellion Glover (lahir 20 April 1964) adalah seorang aktor dan sutradara asal Amerika Serikat. Glover dikenal karena memerankan karakter-karakter eksentrik di layar lebar, seperti George McFly dalam Back to...

 

Leuciscus idus Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Sinonim[2] Cyprinus idus Linnaeus, 1758 Idus idus (Linnaeus, 1758) Cyprinus jeses Linnaeus, 1758 Cyprinus idbarus Linnaeus, 1758 Cyprinus orfus Linnaeus, 1758 Cyprinus microlepidotus Ekström, 1835 Leuciscus neglectus Selys-Longchamps, 1842 Idus melanotus Heckel, 1843 Idus miniatus Bonaparte, 1845 Idus miniatus Heckel & Kner, 1858 Squalius oxianus Kessler, 1877 Idus oxianus (Kessler, 1877...

Children's novel by Andy Griffiths The 13-Storey Treehouse First editionAuthorAndy GriffithsIllustratorTerry DentonCountryAustraliaSeriesThe Treehouse seriesGenreJuvenile fictionPublished2011 (Pan Macmillan Australia)Pages239ISBN978-0-330-40436-5LC ClassPZ7.G88366 Th 2011Followed byThe 26-Story Treehouse Websitehttp://www.andygriffiths.com.au/abook/?id=9781760986520 The 13-Storey Treehouse is a 2011 book[1] written by author Andy Griffiths and illustrated by Terry Dento...

 

American politician Robert CrosserMember of the U.S. House of Representativesfrom OhioIn officeMarch 4, 1913 – March 3, 1919Preceded byinactiveSucceeded byJohn J. BabkaConstituencyAt Large (1913-1915)21st district (1915-1919)In officeMarch 4, 1923 – January 3, 1955Preceded byHarry C. GahnSucceeded byCharles VanikConstituency21st districtMember of the Ohio House of Representativesfrom the Cuyahoga County districtIn officeJanuary 2, 1911 –...

 

Pour les articles homonymes, voir Morane-Saulnier et G. Cet article est une ébauche concernant un aéronef et la Première Guerre mondiale. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Morane-Saulnier Type G Morane-Saulnier Type G du musée de l'Air et de l'Espace de l'aéroport de Paris-Le Bourget Constructeur Morane-Saulnier Rôle Avion de sport, puis en 1914 de reconnaissance et d'entraînement Premier vo...

Pour les articles homonymes, voir Jeudy. Vicky Jeudy Données clés Nom de naissance Vicky Jeudy Naissance 23 janvierQueens New York(États-Unis) Nationalité Américaine Profession Actrice Séries notables Orange is the new black modifier Vicky Jeudy est une actrice haïtienno-américaine, née dans le Queens à New York. Elle se fait connaître du grand public grâce à son rôle de prisonnière, Janae Watson, dans la série télévisée Orange Is the New Black. Biographie Enfance et forma...

 

Daftar keuskupan di Bolivia adalah sebuah daftar yang memuat dan menjabarkan pembagian terhadap wilayah administratif Gereja Katolik Roma yang dipimpin oleh seorang uskup ataupun ordinaris di Bolivia. Konferensi para uskup Bolivia bergabung dalam Konferensi Waligereja Bolivia. Per Juni 2020, terdapat 18 buah yurisdiksi, di mana 4 merupakan keuskupan agung dan 6 merupakan keuskupan sufragan. Terdapat juga 2 buah prelatur teritorial, 1 ordinariat militer, dan 5 vikariat apostolik. Daftar keusku...

 

Edwin Bancroft Henderson Edwin Bancroft Henderson, anche noto come E.B. Henderson (Washington, 24 novembre 1883 – 3 febbraio 1977[1][2]), è stato un insegnante di educazione fisica statunitense, considerato uno dei pionieri della pallacanestro. Biografia È stato definito Grandfather of Black Basketball, ossia il padre della pallacanestro giocata dai neri[3]. Imparò il giocò all'inizio del XX secolo alla Università di Harvard, durante un corso di formazione per i...

2022 Arizona Superintendent of Public Instruction election ← 2018 November 8, 2022 2026 →   Nominee Tom Horne Kathy Hoffman Party Republican Democratic Popular vote 1,256,406 1,247,218 Percentage 50.17% 49.82% County results Congressional district resultsHorne:      50–60%      60–70%      70–80% Hoffman:      50–60%      60–70...

 

Greek politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Panagiotis Kanellopoulos – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) You can help expand this article with text translated from the corresponding article in Greek. (September 20...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Prefektur Tochigi – berita · surat kabar · buku · cendekiawan · JSTORUntuk kegunaan lain, lihat Tochigi. Prefektur Tochigi 栃木県PrefekturTranskripsi Jepang • Jepang栃木県 • ...

Federally-backed student loan program in the United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Federal Direct Student Loan Program – news · newspapers · books · scholar · JSTOR (April 2008) (Learn how and when to remove this message) Student loans in the U.S. Regulatory framework National Defens...

 

درع المجتمع الإنجليزي 2006 تفاصيل الموسم درع المجتمع الإنجليزي  النسخة 84  البلد المملكة المتحدة  المنظم الاتحاد الإنجليزي لكرة القدم  البطل نادي ليفربول  مباريات ملعوبة 1   الحضور الجماهيري 56275   درع المجتمع الإنجليزي 2005  درع المجتمع الإنجليزي 2007  تعدي...

 

City in Catalonia, Spain This article is about the city in Spain. For the football club, see FC Barcelona. For other uses, see Barcelona (disambiguation). City and municipality in Catalonia, SpainBarcelonaCity and municipalitySkyline of BarcelonaSagrada FamíliaTorre GlòriesArc de TriomfEdificio Colón and La RamblaVenetian Towers and Palau NacionalLa BarcelonetaCasa Milà FlagCoat of armsNicknames: Ciutat Comtal (Catalan)Ciudad Condal (Spanish) Comital City or City of Counts ...

Pays frontière au milieu des terres, l’Allier constitue réellement une zone franche entre nord et midi. Largement ouvert aux influences atlantiques le département bénéficie d’un climat doux et humide, dominé par les vents d’ouest, ce qui contribue un peu plus à le démarquer de ses cousins auvergnats. L’humeur du temps s’identifie à la diversité des territoires Bourbonnais, comme les régions plates, et de faible altitude de la Sologne Bourbonnaise et des grandes plaines fl...

 

1918 offensive of the Russian Civil War Not to be confused with Kuban bridgehead. Second Kuban CampaignPart of the Russian Civil WarVolunteer Army infantry companyDateJune 9 (New Style June 22) - November 1918LocationKubanResult White victory Full results Destruction of the Caucasian Bolshevik armyWhites invade the North CaucasusAfter the campaign, the Whites occupy Crimea and southern Ukraine Territorialchanges White Army obtains control of the Kuban regionBelligerents RSFSR Volunteer ArmyCo...

 

Thường trực Ban Bí thưTrung ương Đảng Cộng sản Việt NamĐảng kỳ Đảng Cộng sản Việt NamĐương nhiệmLương Cườngtừ 16 tháng 5 năm 2024Chức vụThường trực Ban Bí thưThành viên củaBan Bí thưBộ Chính trịDinh thựVăn phòng Trung ương Đảng, 1A Hùng Vương, Điện Biên, Ba Đình, Hà NộiBổ nhiệm bởiBộ Chính trị Ban Chấp hành Trung ương Đảng Cộng sản Việt NamNhiệm kỳ5 nămNgười đầu ti...

Restos de la escalera de la Casa de las Tejas en Lerna. En la Antigua Grecia, se llamaba Lerna a una región de manantiales y a un lago cercanos a la costa oriental del Peloponeso, al sur de Argos donde se han hallado restos de asentamientos desde el periodo neolítico hasta la época micénica. En la mitología griega, era conocida principalmente como guarida de la Hidra de Lerna, la serpiente acuática ctónica de múltiples cabezas, una criatura ya de mucha antigüedad cuando la mató Hera...

 

1523 Portuguese-Kathiri engagement Battle of Ash-ShihrPurple: Portuguese presence in Yemen, 16th and 17th century.Pink: Allied sultan territoriesDateFebruary 28 – March 2, 1523 (1523-02-28 – 1523-03-02)LocationAsh-Shihr, Kathiri SultanateResult Portuguese victory[1][2]Belligerents Kingdom of Portugal Kathiri SultanateCommanders and leaders Duarte de Meneses Luís de Meneses[2] Badr Abu Tuairq al-Kathiri Mutran bin Mansur  † ...