Função aditiva

 Nota: Para o significado algébrico, veja aplicação aditiva.

Em teoria dos números, uma função aditiva é uma função aritmética f(n) de inteiros positivos n de tal modo que sempre que a e b são coprimos, a imagem de seu produto é a soma de suas imagens:[1]

f(ab) = f(a) + f(b).

Aditividade completa

Uma função aditiva f(n) é dita completamente aditiva se f(ab) = f(a) + f(b) vale para quaisquer inteiros positivos a e b, mesmo quando não são coprimos.[2] Uma função completamente aditiva também é denominada totalmente aditiva, em analogia à funções totalmente multiplicativas. Se f é uma função completamente aditiva, então f(1) = 0.

Toda função completamente aditiva é aditiva, mas não vice-versa.

Exemplos

Exemplo de funções aritméticas completamente aditivas:

  • A função logarítmica restrita a .
  • A multiplicidade de um fator primo p em n, é o maior expoente m tal que pm divide n.
  • a0(n) - a soma dos primos que dividem n contando fatores repetidos, algumas vezes é chamada sopfr(n) (em inglês sum of the prime numbers that divide repeated factors), a potência de n ou o logaritmo inteiro de n (sequência A001414 na OEIS). Por exemplo:
    a0(4) = 2 + 2 = 4
    a0(20) = a0(22 · 5) = 2 + 2+ 5 = 9
    a0(27) = 3 + 3 + 3 = 9
    a0(144) = a0(24 · 32) = a0(24) + a0(32) = 8 + 6 = 14
    a0(2,000) = a0(24 · 53) = a0(24) + a0(53) = 8 + 15 = 23
    a0(2,003) = 2003
    a0(54,032,858,972,279) = 1240658
    a0(54,032,858,972,302) = 1780417
    a0(20,802,650,704,327,415) = 1240681
  • A função Ω(n), definida como o número total de todos os fatores primos, mesmo repetidos de n, por vezes chamada de "Função Grande Ômega" (sequência A001222 na OEIS) (não confundir com a Ômega ligada à notação de infinitude Grande-O). Por exemplo:
    Ω(1) = 0, pois 1 não possui fatores primos
    Ω(4) = 2
    Ω(16) = Ω(2·2·2·2) = 4
    Ω(20) = Ω(2·2·5) = 3
    Ω(27) = Ω(3·3·3) = 3
    Ω(144) = Ω(24 · 32) = Ω(24) + Ω(32) = 4 + 2 = 6
    Ω(2,000) = Ω(24 · 53) = Ω(24) + Ω(53) = 4 + 3 = 7
    Ω(2,001) = 3
    Ω(2,002) = 4
    Ω(2,003) = 1
    Ω(54,032,858,972,279) = 3
    Ω(54,032,858,972,302) = 6
    Ω(20,802,650,704,327,415) = 7

Exemplo de funções aritméticas que são aditivas mas que não são completamente aditivas:

  • ω(n), definida como o número total de diferentes fatores primos de n (sequência A001221 na OEIS). (não confundir com a Ômega ligada à notação de infinitude Pequeno-O) Por exemplo:
    ω(4) = 1
    ω(16) = ω(24) = 1
    ω(20) = ω(22 · 5) = 2
    ω(27) = ω(33) = 1
    ω(144) = ω(24 · 32) = ω(24) + ω(32) = 1 + 1 = 2
    ω(2,000) = ω(24 · 53) = ω(24) + ω(53) = 1 + 1 = 2
    ω(2,001) = 3
    ω(2,002) = 4
    ω(2,003) = 1
    ω(54,032,858,972,279) = 3
    ω(54,032,858,972,302) = 5
    ω(20,802,650,704,327,415) = 5
  • a1(n) - soma de fatores primos distintos que dividem n, por vezes chamada de sopf(n) (sequência A008472 na OEIS) (em inglês sum of the distinct primes). Por exemplo:
    a1(1) = 0
    a1(4) = 2
    a1(20) = 2 + 5 = 7
    a1(27) = 3
    a1(144) = a1(24 · 32) = a1(24) + a1(32) = 2 + 3 = 5
    a1(2,000) = a1(24 · 53) = a1(24) + a1(53) = 2 + 5 = 7
    a1(2,001) = 55
    a1(2,002) = 33
    a1(2,003) = 2003
    a1(54,032,858,972,279) = 1238665
    a1(54,032,858,972,302) = 1780410
    a1(20,802,650,704,327,415) = 1238677

Funções multiplicativas

Ver artigo principal Função multiplicativa.

A partir de qualquer função aditiva f(n) é fácil criar uma função multiplicativa relacionada g(n) i.e. com a propriedade de que sempre que a e b são co-primos tem-se que:

g(ab) = g(a) × g(b).

Um exemplo é g(n) = 2f(n).

Ver também

Referencias

  1. Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of additive functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. online
  2. Janko Bračič, Kolobar aritmetičnih funkcij (Ring of arithmetical functions), (Obzornik mat, fiz. 49 (2002) 4, pp. 97–108) (MSC (2000) 11A25)

Read other articles:

This is an overview of the regular, recurring, and other characters of the TV series The Last Ship. Overview Character Portrayed by Occupation Seasons 1 2 3 4 5 Tom Chandler Eric Dane Commanding Officer, USS Nathan James Chief of Naval Operations US Naval Academy Instructor Main Rachel Scott Rhona Mitra Paleomicrobiologist Main — Mike Slattery Adam Baldwin Executive Officer, USS Nathan James Commanding Officer, USS Nathan James Main Russ Jeter Charles Parnell Command Master Chief Petty Offi...

 

Halaman sampul karya Ishtori Haparchi Kaftor Vaferech, Venice 1549. Dalam buku cetak Ibrani pertama mengenai geografi Palestina, teridentifikasi 180 lokasi yang disebutkan dalam Alkitab dan sastra Talmud. Ishtori Haparchi (1280-1355) (juga Estori Haparchi, Nestorius ha-Parhi, Ashtori ha-Parhi; Ibrani: אשתורי הפרחיcode: he is deprecated ) adalah nama pena dokter, topografer, dan pengelana, Yahudi dari abad ke-14 Ishak HaKohen Ben Musa.[1] Biografi Ishtori Haparchi lahir di P...

 

Chrisye Duet By RequestAlbum kompilasi karya ChrisyeDirilis2 Januari 2006GenrePopLabelMusica Studio'sProduserChrisye Chrisye Duet By Request merupakan album musik terakhir karya Chrisye sebelum akhirnya meninggal tahun 2007. Dirilis tahun 2006. Dalam album ini Chrisye berduet dengan beberapa musisi seperti judul album ini. Daftar lagu Cinta Yang Lain feat Ungu Kangen feat Sophia Latjuba (Dewa 19) Menunggumu feat Peterpan Kisah Cintaku feat Atiek CB Hening feat Rafika Duri & Trio Libel...

Vermont-based political action committee This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (May 2021) (Learn how and when to remove this template message) This article may contain citations that do not verify the text. Please check for citat...

 

Pour les articles homonymes, voir Harding. Warren G. Harding Portrait de Warren Harding (Par l'agence Harris & Ewing (en), vers 1920). Fonctions 29e président des États-Unis 4 mars 1921 – 2 août 1923(2 ans, 4 mois et 29 jours) Élection 2 novembre 1920 Vice-président Calvin Coolidge Gouvernement Administration Harding Prédécesseur Woodrow Wilson Successeur Calvin Coolidge Sénateur des États-Unis 4 mars 1915 – 13 janvier 1921(5 ans, 10 mois et 9&#...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mr. Bogus – news · newspapers · books · scholar · JSTOR (December 2017) (Learn how and when to remove this template message) American TV series or program Mr. BogusCreated byPeter Keefe[1]Directed byTom BurtonVoices ofCam ClarkeBrian CummingsJim Cumming...

19-та ракетна бригада Нарукавний знак бригадиНа службі 1997—дотеперКраїна  УкраїнаВид Сухопутні військаТип  Ракетні війська та артилеріяБазування м. ХмельницькийРічниці 9 листопадаОснащення комплекс 9К79-1 «Точка-У»Війни/битви Російсько-українська війна Бої за Саву�...

 

Early medieval Georgian kingdom Kingdom of Heretiჰერეთის სამეფო893–1020ssituation in the Caucasus in 850s (Hereti's greatest extent)StatusKingdomCapitalShaki41°11′31″N 47°10′14″E / 41.19194°N 47.17056°E / 41.19194; 47.17056Official languagesGeorgianCommon languagesGeorgianCaucasian AlbanianReligion Georgian Orthodox ChurchOriental OrthodoxKing Historical eraEarly Middle Ages• Established 893• Disestab...

 

German think tank associated with the LaRouche movement Schiller InstituteEstablished1984Board of DirectorsHarley Schlanger, John Sigerson, Fred Huenefeld Jr., Theo MitchellBudgetRevenue: $37,617Expenses: $80,175(FYE December 2015)[1]AddressPO BOX 20244Washington, DC 20041-0244LocationWashington, DC, United StatesWebsitewww.schillerinstitute.org The Schiller Institute is a German-based political and economic think tank founded in 1984 by Helga Zepp-LaRouche,[2] with stated mem...

Pulo AcehKecamatanNegara IndonesiaProvinsiAcehKabupatenAceh BesarPemerintahan • Camat-Populasi • Total- jiwaKode Kemendagri11.06.13 Kode BPS1108130 Luas- km²Desa/kelurahan17 Pulo Aceh adalah sebuah kecamatan di Kabupaten Aceh Besar, Provinsi Aceh, Indonesia. Pulo Aceh merupakan kecamatan yang terletak paling barat di Indonesia. Pulau-pulau di kawasan Pulo Aceh Pulau Benggala Pulau Breueh Pulau Nasi Pulau Keureusek Pulau Batee Pulau Bunta Pulau U Pulau Sidom Dan l...

 

Wakil Bupati Penajam Paser UtaraPetahanaLowongsejak 15 Januari 2022Masa jabatan5 tahunDibentuk2003Pejabat pertamaH. Ihwan Datu Adam, S.E.Situs webpenajamkab.go.id Berikut ini adalah daftar Wakil Bupati Penajam Paser Utara dari masa ke masa. No Potret Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 H.Ihwan Datu AdamS.E. 2003 12 September 2007 1   Drs. H.Yusran AsparM.Si. Jabatan kosong 12 September 2007 2008   H.Ihwan Datu AdamS.E.(Pelaksana Tugas) 2 Drs. H.Mustaqim ...

 

American animated series The Adventures of Puss in BootsGenre Comedy Adventure Animation Voices of Eric Bauza Jayma Mays Paul Rugg Carla Jimenez Carlos Alazraqui Laraine Newman Grey Griffin Joshua Rush Candi Milo Ariebella Makana Theme music composerShawn PattersonComposerShawn PattersonCountry of originUnited StatesNo. of seasons6No. of episodes78 (list of episodes)ProductionExecutive producerDoug LangdaleRunning time23 minutesProduction companyDreamWorks Animation TelevisionOriginal release...

Чорнухинський літературно-меморіальний музей Г.С.Сковороди 50°16′06″ пн. ш. 32°56′14″ сх. д. / 50.268367877694466017° пн. ш. 32.9374652100836585° сх. д. / 50.268367877694466017; 32.9374652100836585Координати: 50°16′06″ пн. ш. 32°56′14″ сх. д. / 50.268367877694466017° пн. ш. 32.937...

 

Köy (pl. Köyler) è il nome ufficiale per un insediamento rurale in Turchia. Indice 1 Amministrazione 2 Struttura 3 Assetti proprietari 4 Note 5 Bibliografia 6 Voci correlate 7 Altri progetti Amministrazione Il termine Köy è usato per insediamenti di meno di 2.000 abitanti.[1] Gli insediamenti con una popolazione compresa tra 2.000 e 20.000 abitanti sono indicati come Belde (piccole città) mentre quelli con una popolazione superiore vengono chiamati Şehir (città). Lo stato è r...

 

Long television commercial For the Adult Swim television series of the same name, see Infomercials (TV specials). An infomercial is a form of television commercial that resembles regular TV programming[1] yet is intended to promote or sell a product, service or idea. It generally includes a toll-free telephone number or website.[2] Most often used as a form of direct response television (DRTV), they are often program-length commercials[1] (long-form infomercials), and ...

Secombe TheatreAs seen from Cheam Road 2016Address42 Cheam Rd, Sutton SM1 2SSGreater LondonEnglandCoordinates51°21′42″N 0°11′50″W / 51.361707°N 0.197146°W / 51.361707; -0.197146OwnerSutton London Borough CouncilOperatorSutton Theatres TrustCapacity343–396Opened1983Closed2016Websitehttp://www.suttontheatres.co.uk/ The Secombe Theatre (originally the Secombe Centre) was a theatre in Cheam Road, Sutton, Greater London.[1] The theatre was opened in 1...

 

Seasonal changes in atmospheric circulation and precipitation This article is about the seasonal winds. For other uses, see Monsoon (disambiguation). Habagat redirects here. For the Philippine Merchant Marine Academy vessel RPLS Habagat, see US FWS Hugh M. Smith. Advancing monsoon clouds and showers in Aralvaimozhy, near Nagercoil, India Monsoon clouds arriving at Port Blair, Andaman, India Part of a series onWeather Temperate and polar seasons Winter Spring Summer Autumn Tropical seasons Dry...

 

Martin Place adalah sebuah mal pejalan kaki di distrik bisnis pusat Sydney, New South Wales, Australia. Tempat kantor pusat Reserve Bank of Australia, Commonwealth Bank of Australia, Macquarie Bank dan perusahaan lain, Martin Place dikaitkan dengan perusahaan-perusahaan Australia. Sydney GPO dan pusat berita Sydney milik Seven Network juga terletak di Martin Place. Martin Place telah menjadi ikon nasional Australia dalam budaya masyarakat karena menarik produksi film dan televisi besar dan a...

The che dian chong. Musketeer firing a che dian chong. The che dian chong (simplified Chinese: 掣电铳; traditional Chinese: 掣電銃; lit. 'lightning quick firearm') is a breech-loading, cartridge-using musket invented by Zhao Shizhen (趙士禎) during the Ming dynasty for the dynasty's arsenals.[1] Like all early breech loading fireams, gas leakage was a limitation and danger present in the weapon's mechanism.[2] The zi mu chong is also a breech loading m...

 

Tram stop in Dublin, Ireland O'Connell UpperÓ Conaill UachtarachThe ticket machines at O'Connell UpperGeneral informationLocationO'Connell Street, DublinDublinIrelandCoordinates53°21′06″N 6°15′40″W / 53.35159305997274°N 6.261056245178666°W / 53.35159305997274; -6.261056245178666Owned byTransdevOperated byLuasLine(s)GreenPlatforms1ConstructionStructure typeAt-gradeOther informationFare zoneCentralKey dates9 December 2017Stop openedServices Preceding station...