Equação de Köhler

Curvas de Köhler mostrando como o diâmetro crítico e a supersaturação dependem da quantidade de soluto. Supõe-se aqui que o soluto é uma esfera perfeita de cloreto de sódio.

A equação de Köhler aborda o processo no qual o vapor de água condensa e forma gotas de nuvem líquidas, e é baseado na termodinâmica do equilíbrio. Ele combina a equação de Kelvin, que descreve a mudança na pressão de vapor saturante devido à curvatura de uma superfície, e a lei de Raoult, que relaciona a pressão de vapor de saturação com a fração molar do solvente.[1] É um processo importante no campo da nefologia. Foi inicialmente publicada em 1936 por Hilding Köhler, professor de meteorologia na Universidade de Uppsala. A equação se trata do seguinte:

em que é a pressão de vapor da água na superfície da gota, é a pressão de vapor saturante correspondente sobre uma superfície plana, é a tensão superficial da água, é a densidade da água pura, é o número de mols de soluto, é a massa molecular da água e é o diâmetro da gota.

Curva de Köhler

A curva de Köhler é a representação visual da equação de Köhler. Ele mostra a supersaturação na qual a gota de nuvem está em equilíbrio com o ambiente numa faixa de diâmetros dessas gotas. A forma exata da curva depende da quantidade e da composição dos solutos presentes na atmosfera. As curvas de Köhler onde o soluto é cloreto de sódio são diferentes de quando o soluto é nitrato de sódio ou sulfato de amônio, por exemplo.

A figura acima mostra três curvas Köhler referentes ao cloreto de sódio. Considere (para gotas contendo soluto com diâmetro igual a 0,05 micrômetros) um ponto no gráfico onde o diâmetro úmido é 0,1 micrômetros e a supersaturação é 0,35%. Como a umidade relativa está acima de 100%, a gota crescerá até que esteja em equilíbrio termodinâmico. Nesse caso, a gota cresce sem que chegue a alcançar o equilíbrio e, portanto, seu crescimento é ilimitado. Contudo, se a supersaturação for de apenas 0,3%, a gota crescerá apenas até cerca de 0,5 micrômetros. A supersaturação na qual a gota crescerá sem limite é chamada de supersaturação crítica e o diâmetro no qual a curva atinge o pico é chamado de diâmetro crítico.

Ver também

Referências

  1. «Köhler Theory 101». Consultado em 26 de junho de 2012 
  • Köhler, H., 1936. O núcleo e o crescimento de gotículas higroscópicas. Trans. Faraday Soc., 32, 1152–1161.
  • Rogers, RR, MK Yau, 1989. Um Curso Breve em Física de Nuvens, 3ª Ed. Imprensa Pérgamo. 293 pp.
  • Young, KC, 1993. Processos Microfísicos em Nuvens. Oxford Press. 427 pp.
  • Wallace, JM, PV Hobbs, 1977. Ciência Atmosférica: Uma Pesquisa Introdutória. Imprensa Acadêmica. 467 pp.

Read other articles:

Tidal island on the coast of South Devon in England Burgh IslandView from Bigbury-on-SeaGeographyLocationEnglish ChannelCoordinates50°16′47″N 3°54′01″W / 50.27972°N 3.90028°W / 50.27972; -3.90028Administration United KingdomConstituent countryEnglandShire countyDevonShire districtSouth HamsAdditional informationNB: Burgh Island is a tidal island Burgh Island is a tidal island on the coast of South Devon in England near the small seaside village of Bigb...

 

 

Prof.Akhmad MuzakkiM.Ag., Grad.Dip. SEA., M.Phil., Ph.D Rektor Universitas Islam Negeri Sunan Ampel Surabaya ke-10Masa jabatan2022–2026 PendahuluProf. H. Masdar Hilmy, S.Ag., MA., Ph.D.PenggantiPetahanaWakil Sekretaris Jenderal Pengurus Besar Nahdlatul UlamaMasa jabatan2022–2027 PendahuluH. Andi Najmi FuaidiPenggantiPetahanaSekretaris Umum Majelis Ulama Indonesia Jawa TimurMasa jabatan2020–2025 Informasi pribadiLahir09 Februari 1974 (umur 50)Sidoarjo, IndonesiaKebangsaanIndonesiaPr...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Masjid al-IjabahMasjid al-IjabahLokasiLokasiMadinah, Arab SaudiArsitekturPeletakan batu pertama622SpesifikasiKubah1Menara1 Masjid Al-Ijabah (Arab: مسجد الإجابةcode: ar is deprecated ), Masjid Bani Muawiyah atau Masjid al-Mubahalah adalah sebuah masjid di Madinah, Arab Saudi yang dibangun pada masa Muhammad di lahan milik Muawiyah bin Malik bin 'Auf dari suku al-Aus. Letak Masjid Al-Ijabah berjarak 385 meter di utara Baqi’ dan berada di jalan raya As-Sittin. Jarak dengan Masjid Na...

 

 

Field of inquiry in business Design management is the business side of design. Design managers need to speak the language of the business and the language of design. Design management is a field of inquiry that uses design, strategy, project management and supply chain techniques to control a creative process, support a culture of creativity, and build a structure and organization for design. The objective of design management is to develop and maintain an efficient business environment in wh...

 

 

Lower house of the National Diet of Japan 35°40′30.6″N 139°44′41.8″E / 35.675167°N 139.744944°E / 35.675167; 139.744944 House of Representatives 衆議院Shūgiin213th Session of the National DietTypeTypeLower house of the National Diet LeadershipSpeakerFukushiro Nukaga, LDP since October 20, 2023 Vice SpeakerBanri Kaieda, CDP since November 10, 2021 Prime MinisterFumio Kishida, LDP since October 4, 2021 Leader of the OppositionKenta Izumi, ...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) كمال الألفي معلومات شخصية تاريخ الميلاد 13 مايو 1955 الوفاة 29 يناير 2017القاهرة الجن�...

 

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

 

 

Voce principale: Juventus Football Club. Juventus FCStagione 1972-1973 Sport calcio Squadra Juventus Allenatore Čestmír Vycpálek Presidente Giampiero Boniperti Serie A1º (in Coppa dei Campioni) Coppa ItaliaFinalista Coppa dei CampioniFinalista Maggiori presenzeCampionato: Zoff (30)Totale: Zoff (50) Miglior marcatoreCampionato: Altafini (9)Totale: Anastasi, Causio (13) StadioComunale Abbonati17 861[1] Media spettatori42 813[2]¹ 1971-1972 1973-1974 ¹ consid...

British lawyer and politician The Right HonourableCharles Pelham VilliersEngraving by John Cochran after a portrait by C. A. Du Val.President of the Poor Law BoardIn office9 July 1859 – 26 June 1866MonarchVictoriaPrime MinisterThe Viscount Palmerston The Earl RussellPreceded byThomas Milner GibsonSucceeded byGathorne HardyMember of Parliamentfor Wolverhampton South Wolverhampton (1835–1885)In office6 January 1835 – 16 January 1898MonarchsWilliam IVVictor...

 

 

British radio DJ and entertainer (1944–1995) Maurice Cole redirects here. For the pianist, see Maurice Cole (pianist). For the cricketer, see Maurice Cole (cricketer). Kenny EverettBirth nameMaurice James Christopher ColeBorn(1944-12-25)25 December 1944Seaforth, Lancashire, EnglandDied4 April 1995(1995-04-04) (aged 50)London, EnglandMediumRadio, televisionYears active1962–1994GenresCharacter comedy,surreal comedy, sketchSpouse Lee Middleton ​ ​(m. 1969&#...

 

 

Halo 6 beralih ke halaman ini. Untuk perilisan Nine Inch Nails yang memakai pseudonim tersebut, lihat Fixed (album mini). Halo Infinite Diterbitkan di 8 Desember 2021 (seluruh dunia) GenrePenembak orang pertamaLisensiLisensi proprietarium Bahasa Daftar Inggris, Italia, Jepang, Jerman, Korea, Latin American Spanish, Portugis Brasil, Prancis, Rusia, Spanyol, Tionghoa Sederhana dan Tionghoa Tradisional 60 Karakteristik teknisPlatformXbox One, Windows dan Xbox Series X dan S MesinSlipspace Engine...

Set algebra redirects here. For the basic properties and laws of sets, see Algebra of sets. Algebraic concept in measure theory, also referred to as an algebra of sets In mathematics, a field of sets is a mathematical structure consisting of a pair ( X , F ) {\displaystyle (X,{\mathcal {F}})} consisting of a set X {\displaystyle X} and a family F {\displaystyle {\mathcal {F}}} of subsets of X {\displaystyle X} called an algebra over X {\displaystyle X} that contains the empty set as an elemen...

 

 

العلاقات الصربية الكولومبية صربيا كولومبيا   صربيا   كولومبيا تعديل مصدري - تعديل   العلاقات الصربية الكولومبية هي العلاقات الثنائية التي تجمع بين صربيا وكولومبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارن...

 

 

1970 single by Three Dog Night Out in the CountrySingle by Three Dog Nightfrom the album It Ain't Easy B-sideGood Time LivingReleasedAugust 1970Recorded1969GenreRockLength3:08LabelDunhillSongwriter(s)Paul WilliamsRoger NicholsProducer(s)Richard PodolorThree Dog Night singles chronology Mama Told Me (Not to Come) (1970) Out in the Country (1970) One Man Band (1970) Out in the Country is a song written by Paul Williams and Roger Nichols and performed by Three Dog Night. It was produced by Richa...

The Monastery of Saint George of Skyros (Greek: Άη-Γώργης Σκυριανός) is a Byzantine monastery on the Greek island of Skyros. The monastery was founded in AD 962 by Saint Athanasius the Athonite.[1] See also Saint George: Devotions, traditions and prayers References ^ EVOIA ISLAND This article on an Eastern Orthodox church building in Greece is a stub. You can help Wikipedia by expanding it.vte This article about a Greek Christian monastery, abbey, priory or other reli...

 

 

Capture de mouvement Un danseur portant une combinaison avec des marqueurs passifs réfléchissants, lors d'une capture optique de mouvement. Données clés Acronyme mocap Transcription Motion Capture Domaine d'application Prise de vues cinématographique Date de création années 1990 Données clés Invention parente chronophotographie La capture de mouvement[1],[2] (motion capture en anglais, parfois abrégé en mocap) est une technique permettant d'enregistrer les positions et rotations d...

 

 

В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (4 августа 2012) Министерство иностранных дел Мьян...

Building in Amboise, France Château de ChanteloupView from the north in 1767Location within FranceGeneral informationArchitectural styleBaroque and NeoclassicalTown or cityAmboise (Indre-et-Loire)CountryFranceCoordinates47°23′44″N 0°58′12″E / 47.39548°N 0.96988°E / 47.39548; 0.96988Construction started1583Renovatedc. 1700, 1711, 1762Demolished1823Design and constructionArchitect(s) 1711: Robert de Cotte 1762–1775: Louis-Denis Le Camus The Château ...

 

 

Chacteristic property of holomorphic functions Cauchy–Riemann redirects here. For Cauchy–Riemann manifolds, see CR manifold. A visual depiction of a vector X in a domain being multiplied by a complex number z, then mapped by f, versus being mapped by f then being multiplied by z afterwards. If both of these result in the point ending up in the same place for all X and z, then f satisfies the Cauchy–Riemann condition. Mathematical analysis → Complex analysisComplex analysis Complex num...