플라톤의 다면체는 m ≥ 3이고 n ≥ 3일 때만 정수해를 가진다. 제한 m ≥ 3은 다각형 면은 반드시 최소 세 개 이상의 변을 가져야 한다는 것을 강조한다.
다면체를 구면 타일링으로 생각할 때, 이 제한은 완화될 수 있다; 이각형 (2각형)을 면적이 영이 아닌 구면 달꼴로 나타낼 수 있다. m = 2를 허락함으로써 새로운 정다면체의 무한한 부류, 호소헤드론을 허락하게 한다. 구면에서, 다면체 {2, n}은 n개의 맞닿는 내각이 2π/n인 달꼴로 표현된다. 이 모든 달꼴들은 꼭짓점 두 개를 공통으로 가진다.
2n각 호소헤드론 {2,2n}의 이각형 (달꼴)면은 삼차원의 이면체 대칭의 기본 삼각형을 나타낸다: Cnv, [n], (*nn), 2n. 반사 영역은 교대로 칠한 달꼴을 거울상으로 나타낼 수 있다. 달꼴을 두개의 구면 삼각형으로 이등분하면 쌍각뿔을 만들고 이면체 대칭 Dnh, 4n차를 정의한다.