달 학살
|
Read other articles:
BuddhaAlbum demo karya Blink-182Dirilis30 November 1993 (original)27 Oktober 1998 (re-issue)Direkam1992–1993Double Time Studios, San Diego, CAGenreSkate punk, punk rockDurasi32:3031:55 (remastered version)LabelFilter (original)Kung Fu (re-issue)ProduserBlink-182Album non-studio Blink-182 Demo #2(1993)Demo #21993 Buddha(1993) Short Bus EP(1994)Short Bus EP1994 Buddha adalah album demo ketiga dan terakhir oleh band pop punk Amerika Blink-182. Demo ini diproduksi oleh mereka sendiri dan di...
NeverthelessPoster promosiHangul알고있지만 GenrePercintaan[1]BerdasarkanI Know But (webtoon)oleh Jung SeoDitulis olehJung WonSutradaraKim Ga-ramPemeranSong KangHan So-heeChae Jong-hyeopPenata musikKim Tae-sungCho Kyung-heeNegara asalKorea SelatanBahasa asliKoreaJmlh. episode10ProduksiProduser eksekutifJoo Sa-hyunSoo Sung-kyungProduserJung Ah-reumKwon Mi-kyungPark Seong-eunKim Bo-reumSinematografiMoon Mun-hwanChoi Young-kiPenyuntingShin Seung-ahLee Ga-youngDurasi70 menitRum...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Stadion Manahan – berita · surat kabar · buku · cendekiawan · JSTOR (Oktober 2023)Stadion Manahanꦱꦼꦠꦣꦶꦪꦺꦴꦤ꧀ꦩꦤꦲꦤ꧀ Informasi stadionNama lengkapStadion Gelora ManahanPemilikPemerin...
Agence impérialeAgence de la Maison impériale, palais impérial de TokyoHistoireFondation 1er juin 19491949Prédécesseur 宮内府 (d)CadreType Maison royale, agence externe (Bureau du premier ministre du Japon) (1er juin 1949 - 5 janvier 2001), bureau du gouvernementForme juridique Bureau du gouvernementSiège Palais impérial de TokyoPays JaponOrganisationOrganisations mères Bureau du premier ministre du Japon (d) (1er juin 1949 - 5 janvier 2001)Bureau du Cabinet (depuis le 6 jan...
American politician Richard P. BlandMember of theU.S. House of Representativesfrom MissouriIn officeMarch 4, 1873 – March 3, 1895Preceded byJohn B. Clark, Jr.Succeeded byJoel D. HubbardConstituency5th district (1873–83)11th district (1883–93)8th district (1893–95)In officeMarch 4, 1897 – June 15, 1899Preceded byJoel D. HubbardSucceeded byDorsey W. ShacklefordConstituency8th district Personal detailsBornRichard Parks Bland(1835-08-19)August 19, 1835Hartford, Kentuck...
Italian tennis player Sara ErraniSara Errani at the 2022 Wimbledon ChampionshipsCountry (sports) ItalyResidenceBologna, ItalyBorn (1987-04-29) 29 April 1987 (age 36)Bologna, ItalyHeight1.64 m (5 ft 5 in)Turned pro2002PlaysRight-handed (two-handed backhand)CoachPablo Lozano Beamud (2004–2016, present)Prize moneyUS $14,388,032 [1] 37th in all-time rankings Official websitesara-errani.comSinglesCareer record663–490 (57.5%)Career title...
Коэффициент зацепления — целочисленная характеристика пары пространственных замкнутых кривых без пересечений и самопересечений, описывающая суммарное количество раз, которое одна кривая в определённом смысле зацепляется за другую. Коэффициент зацепления являетс...
German communist and resistance fighter Hilde CoppiHilde Coppi in a humorous momentBornBetti Gertrud Käthe Hilda Rake(1909-05-30)30 May 1909Mitte, German EmpireDied5 August 1943(1943-08-05) (aged 34)Plötzensee Prison, Berlin, Nazi GermanyOccupationClerkYears active1933–1943MovementRed OrchestraSpouseHans CoppiChildren1 (Hans Coppi Jr.) Betti Gertrud Käthe Hilda Coppi (née Rake; 30 May 1909 – 5 August 1943), known as Hilde Coppi, was a German communist[1] and resistan...
Species of legume Lysiloma latisiliquum Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Fabales Family: Fabaceae Subfamily: Caesalpinioideae Clade: Mimosoid clade Genus: Lysiloma Species: L. latisiliquum Binomial name Lysiloma latisiliquum(L.) Benth. Synonyms Acacia bahamensis (Benth.) Griseb. Acacia latisiliqua (L.) Willd. Leucaena latisiliqua (L.) Gillis...
ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...
Le elezioni regionali italiane del 1968 coinvolsero le tre regioni autonome del Nord. In vista dell'istituzione delle regioni ordinarie, si volle adeguare anche quelle autonome al nuovo mandato quinquennale, e a queste elezioni seguiranno dunque quelle del 1973.[1] Riguardando solo regioni speciali, con forti minoranze etniche, queste elezioni ebbero valenza strettamente locale[non chiaro]. Elenco Elezioni regionali in Valle d'Aosta del 1968, 21 aprile Elezioni regionali ...
Cet article est une ébauche concernant une salle de spectacle et une salle de cinéma. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. New Beverly Cinema La façade du cinéma, diffusion ici la version combinée des deux volumes de Kill Bill Données clés Type cinéma Lieu 7165 Beverly Boulevard, Los Angeles Coordonnées 34° 04′ 34...
Iglesias barrocas de Filipinas Patrimonio de la Humanidad de la Unesco Iglesia de San Agustín de ManilaLocalizaciónPaís Filipinas FilipinasCoordenadas 14°35′20″N 120°58′31″E / 14.58886, 120.97535Datos generalesTipo CulturalCriterios ii, ivIdentificación 677Región Asia y OceaníaInscripción 1993 (XVII sesión) Sitio web oficial [editar datos en Wikidata] Interior de la iglesia de San Agustín. La iglesia de San Agustín es una iglesia católica si...
Pour les articles homonymes, voir Gothie. Cet article est une ébauche concernant la Suède. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Östergötland Héraldique Administration Pays Suède Région historique Götaland Plus grande ville Linköping Démographie Population 410 757 hab. (2003) Densité 41 hab./km2 Géographie Coordonnées 58° 24′ 57″ nord, 15° 37′...
Cet article est une ébauche concernant un coureur cycliste allemand. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Jürgen KraftInformationsNaissance 26 novembre 1951BuseckDécès 11 juin 2002 (à 50 ans)CharlottenbourgNationalité allemandeÉquipes professionnelles 05.1977-12.1977[n 1]Selle Royal-Contour-Alan 1978-1979Teka1980 Kondor-CampagnoloPrincipales victoires Champion d'Allemagne sur route (1977)...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
Australian politician, 11th Deputy Prime Minister of Australia The HonourableJohn AndersonAC FTSEDeputy Prime Minister of AustraliaIn office20 July 1999 – 6 July 2005Prime MinisterJohn HowardPreceded byTim FischerSucceeded byMark VaileLeader of the National PartyIn office20 July 1999 – 23 June 2005DeputyMark VailePreceded byTim FischerSucceeded byMark VaileMinister for Transport and Regional DevelopmentIn office21 October 1998 – 6 July 2005Prime MinisterJo...
This is a list of dance terms that are not names of dances or types of dances. See List of dances and List of dance style categories for those. This glossary lists terms used in various types of ballroom partner dances, leaving out terms of highly evolved or specialized dance forms, such as ballet, tap dancing, and square dancing, which have their own elaborate terminology. See also: Glossary of ballet terms Glossary of dance moves Abbreviations 3T – Three Ts CBL – Cross-body lead CBM �...
Theorem in manifold theory This article is about Gauss's lemma in Riemannian geometry. For other uses, see Gauss's lemma. In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space at p to M: e x p : T p M !...
1935 U.S. federal labor law National Labor Relations Act (Wagner Act)Long titleAn act to diminish the causes of labor disputes burdening or obstructing interstate and foreign commerce, to create a National Labor Relations Board (NLRB), and for other purposes.NicknamesWagner ActEnacted bythe 74th United States CongressEffectiveJuly 6, 1935CitationsPublic law74-198Statutes at Large49 Stat. 449CodificationTitles amended29 U.S.C: LaborU.S.C. sections amended29 U.S.C. §...