기하학에서, 각(角 영어: angle)은 같은 끝점을 갖는 두 반직선이 이루는 도형이다. 이 끝점을 각의 꼭짓점(-點, 영어: vertex)이라고 하며, 두 반직선을 각의 변(邊, 영어: side)이라고 한다. 각의 두 변이 벌어진 정도, 즉 각의 크기를 나타내는 양을 각도(角度)라고 한다. 엄밀하게 말하면, 시초선에서 동경까지 시계 반대방향으로 벌어진 정도이다. 보통 각이라고 하면 평면상에서 정의되는 것을 말하지만 3차원 공간에서 말하는 입체각도 정의할 수 있다.
종류
기하학에서 각(角, angle)은 평면상의 두 직선이 서로 만나 교차를 이룰 때 그 두 직선들이 서로에 대해 벌어진 정도를 각이라 하고 이러한 각의 크기를 각도(角度)라고 부른다.[1]
그러나 이러한 엄격한 정의에 의한다면 두 직선이 서로 한 직선상에서 일치하지 않는 한 교차되는 각은 서로 양쪽으로 2개씩의 각이 생겨 항상 4개가 나타나게되므로 좌표평면상의 0점을 기준으로 끝점을 갖는 두 반직선을 가정하여 단 하나의 각을 갖는 경우를 가정할 수 있다.
이것은 두 직선의 각 끝점들 중 같은 방향의 끝점들이 한 점에서 만나게 되는 것을 의미한다.[2]
이처럼 각은 평면 상의 두 직선들이 서로에 대해 기울어진 정도를 표현한 것이지만 좌표평면 상의 x, y축 이외에 z축 등의 증가를 추가적으로 설정함으로써 3차원 같은 입체각이 깊이나 또다른 성질을 표현하도록 가정할 수도 있다.
원주각(圓周角, =원둘레각): 원의 원주 즉 원둘레 위의 한 점에서 그은 두 개의 현이 만드는 각으로 그 크기는 중심각의 이다.
중심각(中心角, central angle)-원의 두 반지름이 만드는 각 또는 그러한 각을 갖는 도형의 각
꼭지각(--角, =정각(頂角), vertical angle)
구면각(球面角, spherical angle, =공면각)
특수각과 일반각
특수각은 삼각함수에서 나타나는 0˚, 15˚, 30˚, 45˚, 60˚, 75˚, 90˚를 가리키며 이로 인해 단위원상에서 정삼각형, 정사각형 등을 사용해 그 삼각비를 유도하여 얻을 수 있다. 이러한 특별한 각들인 특수각들은 삼각함수등에서 매우 중요한 성질을 갖는다.
단위원상에서 0˚,30˚, 45˚, 60˚, 90˚을 내각으로 갖는 정삼각형, 이등변삼각형, 정사각형은 아래와 같이 0˚,30˚, 45˚, 60˚, 90˚와 그의 주기적인 각도 120˚,135˚,150˚,180˚,....등에서 삼각함수를 얻게 해주기에 특별한 각으로 불린다. 그리고 15˚와 75˚는 삼각함수의 덧셈정리로 유도할 수 있다.
일반각은 임의의 반직선을 기준선(축)으로해서 그것과 원점을 꼭지점으로 공유하는 또다른 반직선(동경 선)이 이루는 각 또는 이러한 각과 그 동경선의 회전으로 얻어진 각을 합하여 나타내는 각을 가리킨다. 일반각은 360˚n+α(n은 원둘레 회전횟수 ,α는 각도, 호도법으로는 2πn+α)처럼 표현된다.