1940年代にロスアラモス国立研究所で働いていたスタニスワフ・ウラムは結晶の成長について研究していたとき、モデルとして単純な格子ネットワークを使用していた[6]。同じころロスアラモスで一緒に働いていたジョン・フォン・ノイマンは自己複製機械を研究していた[7]。フォン・ノイマンはまず、あるロボットの記述に基づいて別のロボットの記述を行うという設計を考えていた。この設計は運動学モデル(Kinematic model)と呼ばれている[8][9]。設計を進めるに連れ、フォン・ノイマンは、複製を作るための「部品の海」をロボットに与えることのコストの膨大さやあるロボットが別のロボットを作るということを記述する大変さを徐々に理解していった。ノイマンは1948年の Hixon Symposium にて "The general and logical theory of automata" と題した論文を読む[7]。またウラムはフォン・ノイマンに自己複製の還元主義的モデルとして離散系を使ってはどうかと示唆した[10][11]。Nils Aall Barricelli はそういったモデルを使って人工生命を研究していた。
1969年、ドイツのコンピュータのパイオニアの1人であるコンラート・ツーゼは、著書 Calculating Space の中で、宇宙の物理法則は本質的には離散的であり、宇宙全体が一種の巨大なセル・オートマトン上の決定的な計算の結果であると主張した。この著書が今日デジタル物理学と呼ばれている分野の基礎を築いた[18]。
ウルフラムは1980年代中盤以降に学界を去ってMathematicaを開発し、彼のそれまでの研究結果を広い範囲の単純で抽象的な系に拡張して適用するのに Mathematica を使った。2002年、ウルフラムはそれらの成果を1280頁の著書 A New Kind of Science として発表した。この中でセル・オートマトンがあらゆる科学にとって重要な関わりを持つことを主張している。一部で誤解されているように、同書は物理法則がセル・オートマトンに基づいているとは言っていない(ツーゼとは異なる)が、セル・オートマトンに基づいた物理モデルをいくつか記述しており、他にも各種抽象系に基づいたモデルを示している。
1次元のセル・オートマトンについては、プレイメージを探すアルゴリズムが知られていて、各ルールについて可逆的かそうでないかは既に判明している[34][35]。2次元以上のセル・オートマトンについては、任意のルールの可逆性は決定不能であることが証明されている。Jarkko Kari による証明は、ワンのタイルのタイル並べ問題と関連している[36]。
また、規則を決定的なものではなく確率的なものにする拡張もある。そのようなCAを確率的セル・オートマトン(英語版)と呼ぶ。この場合、時刻 t のパターンから時刻 t+1 のとりうる各パターンの遷移確率が確率的規則により指定される。もっと単純な規則を使うこともあり、例えば「基本的にライフゲームの規則に従うが、毎回0.001%の確率で本来とは反対の色になる」といった規則を設定する。
ルール110はライフゲームのように「クラス4」の挙動を示し、完全な無作為でもなく、完全な反復でもない。局所的構造が現れ、様々な複雑な形で相互作用する。1994年ウルフラムの研究助手だったマシュー・クックは、それら構造の一部がチューリング完全性をサポートするのに十分であることを証明した。ルール110は非常に単純な1次元のシステムであり、具体的なことを実行するよう設計するのは困難であるため、この成果は興味深い。この結果からウルフラムはクラス4のセル・オートマトンが本質的にチューリング完全である可能性を示唆した。1998年、セル・オートマトンの学会がサンタフェ研究所で開催され、クックはその成果を発表したが、ウルフラムは A New Kind of Science の出版前にその証明の詳細を公表したくなかったため、証明の詳細は発表されなかった[46]。2004年、Cookの証明がウルフラムの発行する雑誌 Complex Systems (Vol. 15, No. 1) で発表された。実に証明してから10年が経過している。ルール110をベースとして極小の万能チューリングマシンが構築されている[47]。
セル・オートマトンを誤り訂正符号の設計に応用した例として、D. Roy Chowdhury、S. Basu、I. Sen Gupta、P. Pal Chaudhuri の論文 "Design of CAECC - Cellular Automata Based Error Correcting Code" がある。この論文ではセル・オートマトンを使って SEC-DED符号(1ビット誤り訂正-2ビット誤り検出符号)を構築する新たな手法が定義されており、その符号の高速ハードウェアデコーダも報告されている。
Andrew Ilachinski は著書 Cellular Automata で、多くの学者が宇宙自体がセル・オートマトンなのではないかという疑問を投げかけていると指摘した[61]。Ilachinskiは、この問題の重要性を示すには簡単な観察をしてみるのがよいと主張し、例えばルール110(英語版)の発展するパターンをどうやったらうまく説明できるか考えてみるのがよいとした[62]。そして、もしそのイメージの生成方法を知らないとしたら、何らかの粒子状のオブジェクトの運動の軌跡ではないかと推測するだろうと述べている。実際、物理学者 James Crutchfield はその考え方から厳密な数学的理論を構築した[63]。この考え方を推し進めていくと、素粒子物理学で説明されている我々の世界も根底ではCAと見なせるのではないかという考え方に到達する。
21世紀に入ると、非標準計算についての著作からこの考え方に沿った示唆が生まれている。ウルフラムの A New Kind of Science では、CAが物理学を含めた様々な主題を理解する鍵だとしている。(Francesco Berto が創始し、Gabriele Rossi と Jacopo Tagliabue が発展させた)iLabs[67]が2010年に出版した Mathematics Of the Models of Reference では「菱形十二面体」をベースとする格子と独特の規則で2次元および3次元の宇宙を説明するモデルを提案している。このモデルはチューリングマシンと等価であり、完全な可逆性を有し(様々な量を保存し、情報を決して失わない)、宇宙の発展についての質的な論述を計算できる論理が組み込まれている[68]。
^Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling Publishing Company, Inc. p. 406. ISBN978-1402757969
^John von Neumann, “The general and logical theory of automata,” in L.A. Jeffress, ed., Cerebral Mechanisms in Behavior – The Hixon Symposium, John Wiley & Sons, New York, 1951, pp. 1-31.
^John G. Kemeny, “Man viewed as a machine,” Sci. Amer. 192(April 1955):58-67; Sci. Amer. 192(June 1955):6 (errata).
^von Neumann, John; Burks, Arthur W. (1966). Theory of Self-Reproducing Automata. University of Illinois Press
^Wiener, N.; Rosenblueth, A. (1946). “The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle”. Arch. Inst. Cardiol. México16: 205.
^Davidenko, J. M.; Pertsov, A. V.; Salomonsz, R.; Baxter, W.; Jalife, J. (1992). “Stationary and drifting spiral waves of excitation in isolated cardiac muscle”. Nature355 (6358): 349–351. Bibcode: 1992Natur.355..349D. doi:10.1038/355349a0. PMID1731248.
^Serafino Amoroso, Yale N. Patt, Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures. J. Comput. Syst. Sci. 6(5): 448-464 (1972)
^Yves Bouligand (1986). Disordered Systems and Biological Organization. pp. 374–375
^A. K. Dewdney, The hodgepodge machine makes waves, Scientific American, p. 104, August 1988.
^M. Gerhardt and H. Schuster, A cellular automaton describing the formation of spatially ordered structures in chemical systems, Physica D 36, 209-221, 1989.
^ abThe Evolution of Emergent Computation, James P. Crutchfield and Melanie Mitchell (SFI Technical Report 94-03-012)
^ abThe Evolutionary Design of Collective Computation in Cellular Automata, James P. Crutchfeld, Melanie Mitchell, Rajarshi Das (In J. P. Crutch¯eld and P. K. Schuster (editors), Evolutionary Dynamics|Exploring the Interplay of Selection, Neutrality, Accident, and Function. New York: Oxford University Press, 2002.)
^Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work, Melanie Mitchell, James P. Crutchfeld, Rajarshi Das (In Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96). Moscow, Russia: Russian Academy of Sciences, 1996.)
^Tomassini, M.; Sipper, M.; Perrenoud, M. (2000). “On the generation of high-quality random numbers by two-dimensional cellular automata”. IEEE Transactions on Computers49 (10): 1146–1151.
^Wolfram, S. "Cryptography with Cellular Automata", In Advances in Cryptology: CRYPTO '85 Proceedings [Williams, H. C. (Ed.)]. Lecture Notes in Computer Science 218. Springer-Verlag, 429–432, 1986.
^Blackford, Russell; Ikin, Van; McMullen, Sean (1999). “Greg Egan”. Strange constellations: a history of Australian science fiction. Contributions to the study of science fiction and fantasy. 80. Greenwood Publishing Group. pp. 190–200. ISBN978-0-313-25112-2
^Hayles, N. Katherine (2005). “Subjective cosmology and the regime of computation: intermediation in Greg Egan's fiction”. My mother was a computer: digital subjects and literary texts. University of Chicago Press. pp. 214–240. ISBN978-0-226-32147-9
Barral, Bernard; Chaté, Hugues; Manneville, Paul (1992). “Collective behaviors in a family of high-dimensional cellular automata”. Physics Letters A163 (4): 279–285. doi:10.1016/0375-9601(92)91013-H.
A.M. Turing. 1952. The Chemical Basis of Morphogenesis. Phil. Trans. Royal Society, vol. B237, pp. 37 – 72. - 連続的オートマトンの一種を提唱している。
Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work, Melanie Mitchell, James P. Crutchfeld, Rajarshi Das (In Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96). Moscow, Russia: Russian Academy of Sciences, 1996.)
The Evolutionary Design of Collective Computation in Cellular Automata, James P. Crutchfeld, Melanie Mitchell, Rajarshi Das (In J. P. Crutch¯eld and P. K. Schuster (editors), Evolutionary Dynamics|Exploring the Interplay of Selection, Neutrality, Accident, and Function. New York: Oxford University Press, 2002.)
The Evolution of Emergent Computation, James P. Crutchfield and Melanie Mitchell (SFI Technical Report 94-03-012)