東京都交通局8500形電車
|
Read other articles:
Disambiguazione – Se stai cercando altri significati, vedi Rift (disambigua). Schema di formazione di un rift. Le zolle nella crosta terrestre, secondo la teoria della tettonica a zolle. In geologia, per rift (in inglese: «frattura, spaccatura») si intende una regione in cui la crosta terrestre e la litosfera si trovano in condizioni tettoniche distensive e vengono separate sotto l'azione di forze di trazione generate dai movimenti convettivi del mantello terrestre sottostante.[1]...
Palm adalah Personal Digital Assistant (PDA) yang menjalankan Palm OS. Palm TX menawarkan kemampuan untuk browsing Internet nirkabel Model awal—PalmPilot Personal Berkas:Palm 3xe with portable keyboard on top of original manual handbook etc with custom franklin dictionary case (promotional) and go-vox voice recorder fliplid.jpgUnit Palm IIIxe dengan Aksesoris. Palm IIIc adalah versi pertama Palm dengan layar berwarna Palm m100 monokrom PalmOne Tungsten, versi T5 yang terkenal sebagai sukses...
Executive leaders of local government Ken Livingstone and Boris Johnson were directly elected mayors of London. Local authority areas in England typically have an executive leader and a cabinet selected from the local council, similar to how the national prime minister and cabinet are selected from Parliament. In contrast, residents of some areas, or groups of areas known as combined authorities or combined county authorities, directly elect the executive mayors of their local government. The...
Marry GraveGambar sampul manga volume pertamaマリーグレイブ(Marī Gureibu)GenreFantasi gelap[1] MangaPengarangYamaji HidenoriPenerbitShogakukanPenerbit bahasa IndonesiaM&C!Penerbit bahasa PrancisKanaMajalahWeekly Shōnen SundayDemografiShōnenTerbit13 Desember 2017 – 16 Januari 2019Volume5 (Daftar volume) Portal anime dan manga Marry Grave (Jepang: マリーグレイブcode: ja is deprecated , Hepburn: Marī Gureibu) adalah sebuah seri manga shōnen Jepang berge...
American aviator and astronaut (1937–2017) Bruce McCandless IIMcCandless in 1971BornByron Willis McCandless(1937-06-08)June 8, 1937Boston, Massachusetts, U.S.DiedDecember 21, 2017(2017-12-21) (aged 80)Los Angeles, California, U.S.Resting placeUnited States Naval Academy CemeteryEducationUnited States Naval Academy (BS)Stanford University (MS)University of Houston (MBA)Spouse(s)Bernice DoyleEllen ShieldsChildren2Space careerNASA astronautRankCaptain, USNTime in space13d 0h 31mSelectionN...
追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...
Hail, Caesar!Poster film Hail, Caesar!SutradaraCoen bersaudaraProduserCoen bersaudaraTim BevanEric FellnerDitulis olehCoen bersaudaraPemeranJosh BrolinGeorge ClooneyAlden EhrenreichRalph FiennesJonah HillScarlett JohanssonFrances McDormandTilda SwintonChanning TatumNaratorMichael GambonPenata musikCarter BurwellSinematograferRoger DeakinsPenyuntingRoderick JaynesPerusahaanproduksiWorking Title FilmsMike Zoss ProductionsDistributorUniversal PicturesTanggal rilis 1 Februari 2016 (201...
此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...
Not to be confused with Eadwulf I of Northumbria. King of Northumbria EardwulfKing of Northumbria1st Reign14 May 796 – 806Coronation26 May 796PredecessorOsbaldSuccessorÆlfwald II2nd Reign808PredecessorÆlfwald IISuccessorEanredDiedafter 808BurialBreedon on the Hill?IssueEanredFatherEardwulf Eardwulf (fl. 790 – c. 830) was king of Northumbria from 796 to 806, when he was deposed and went into exile. He may have had a second reign from 808 until perhaps 811 or 830. Northumbria in...
The German People's Council (German: Deutscher Volksrat) was a consultative body in the Soviet Occupation Zone of Germany that operated in 1948-1949. The main task of the People’s Council was to draw up a constitution on the basis of a draft presented by the SED in 1946. First people's council Meeting of the first People's Council, March 1949 The First German People's Council emerged from the Second German People's Congress convened on 17-18 March 1948. It consisted of 300 voting members of...
7th/6th-century BC Greek seer, philosopher, and poet This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2012) (Learn how and when to remove this message) Epimenides of Knossos Epimenides of Knossos (or Epimenides of Crete) (/ɛpɪˈmɛnɪdiːz/; Greek: Ἐπιμενίδης) was a semi-mythical 7th or 6th century BC Greek seer and philosopher-poet, from...
1997 studio album by Michael Learns to RockNothing to LoseStudio album by Michael Learns to RockReleasedSeptember 12, 1997Recorded1995–1996 in Aarhus (MLTR Studio) and Copenhagen (Grapehouse Studio, Peter Mark Studio, Elsound Studio)StudioMLTR Studio, Peter Mark Studio, Grapehouse Studio, Elsound StudioGenreSoft rock, pop rock, alternative rock, soulLabelMLTR Music, Medley, Warner MusicProducerMichael Learns to Rock, Oli PoulsenMichael Learns to Rock chronology Paint My Love(1996) N...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الحاوية في علم الحاسوب هي الصنف أو الهيكل من البيانات[1][2] الذي يحتوي على جملة من الكائنات الأخرى. المراجع ^ Paul E. Black (ed.), entry for data structure in Dictionary of Algorithms and Data Structures. ن�...
Traditional Turkish equestrian team sport Jereed (also jerreed, jerid, or jerrid; Turkish: Cirit) is a traditional Turkish equestrian team sport played outdoors on horseback in which the objective is to score points by throwing a blunt wooden javelin at opposing team's horsemen. Played by Turkic peoples in Central Asia as the essential sporting and ceremonial game, it was brought to Anatolia during the westward migration in the beginning of the 11th century. History Ottoman horsemen exercisin...
Disambiguazione – Se stai cercando altri significati, vedi Learco (disambigua). LearcoLearco mentre viene ucciso dal padre Atamante Nome orig.Λέαρχος Caratteristiche immaginarieSessomaschio Luogo di nascitaBeozia Learco (in greco antico: Λέαρχος?, Léarchos) è una figura della mitologia greca, figlio di Atamante re di Beozia e di Ino[1]. Fu fratello di Melicerte[1]. Mitologia Fu ucciso ancora fanciullo dal padre che era stato fatto impazzire da Era[2...
Gesellschaftshaus Memorial plaque, Großen Petersgrube 27 The Gesellschaft zur Beförderung gemeinnütziger Tätigkeit (Society for the Furtherance of Charitable Activities) is Lübeck's oldest charitable organization. History It was the preacher at St. Peter's Church, Lübeck (and later lawyer) Ludwig Suhl (1752–1819) and his friends Christian Adolph Overbeck, Johann Julius Walbaum, Anton Diedrich Gütschow, Gottlieb Nicolaus Stolterfoth, Johann Friedrich Petersen, and Nicolaus Heinrich Br...
Former theatre in Manhattan, New York The Capitol TheatreCapitol Theatre program (1922), mentioning Edward Bowes and S. L. Rothafel, manager and producer.Address1645 BroadwayNew York CityUnited StatesCoordinates40°45′43″N 73°59′02″W / 40.76195°N 73.9839°W / 40.76195; -73.9839OwnerLoews TheatresTypeMovie palaceCapacity5,230ConstructionOpenedOctober 24, 1919ClosedSeptember 16, 1968Demolished1968Years active1919–1968ArchitectThomas W. Lamb The Capitol Theatr...
Cet article est une ébauche concernant l’architecture ou l’urbanisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Space Needle(en) Space NeedleLa Space Needle en 2011.HistoireArchitecte John Graham & AssociatesIngénieur Victor Steinbrueck (en)Construction 1960-1961Ouverture 21 avril 1962Usage Observation, restaurantArchitectureStyle GoogiePatrimonialité Seattle Landmark (d)Hauteur Flèche...
خط منحني. في مجال الرياضيات، يعد مصطلح النظام اللاخطي مصطلحًا لا يستوفي شروط مبدأ التراكب، أو مصطلحًا يكون ناتجه غير متناسب مباشرة مع مدخلاته، بينما يحقق النظام الخطي تلك الشروط. وبمعنى آخر، فإن النظام اللاخطي هو أية مشكلة يكون فيها المتغير (المتغيرات) المفترض حلها لا يمكن...