公益法人
|
Read other articles:
Caplak yang merupakan salah satu vektor arbovirus yang berpotensi menyebabkan penyakit Meningo-Ensefalitis adalah suatu kondisi pembengkakan (inflamasi) dari selaput otak (meningen) dan meliputi bagian jaringan saraf otak.[1] Sejarah Pada tahun 1958, Clyde Culbertson menemukan bahwa kontaminasi ameba pada vaksin polio yang terkontaminasi dapat menyebabkan penyakit yang menyerang sistem saraf dengan model hewan tikus dan kera.[1] Awalnya timbul dugaan bahwa hal ini disebabkan o...
العلاقات الإكوادورية اللاوسية الإكوادور لاوس الإكوادور لاوس تعديل مصدري - تعديل العلاقات الإكوادورية اللاوسية هي العلاقات الثنائية التي تجمع بين الإكوادور ولاوس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...
Lymphocytes that become large as a result of antigen stimulation Reactive lymphocyte surrounded by red blood cells In immunology, reactive lymphocytes, variant lymphocytes, atypical lymphocytes, Downey cells or Türk cells are cytotoxic (CD8+) lymphocytes that become large as a result of antigen stimulation. Typically, they can be more than 30 μm in diameter with varying size and shape. Discovery Reactive lymphocytes were originally described by W. Türk in 1907 in the peripheral blood ...
For the Bob Dylan song, see Ring Them Bells (song). For the Kander and Ebb song Ring Them Bells, see Liza with a Z. 1995 live album by Joan BaezRing Them BellsLive album by Joan BaezReleasedSeptember 1995RecordedThe Bottom Line (live), New York City, April 1995GenreFolkLabelProperProducerMark SpectorJoan Baez chronology Rare, Live & Classic(1993) Ring Them Bells(1995) Live at Newport(1996) Professional ratingsReview scoresSourceRatingAllMusic[1] Ring Them Bells is a live a...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
Song by Fiona AppleTiny HandsSong by Fiona AppleLength1:02Songwriter(s)Fiona AppleProducer(s)Michael Whalen Tiny Hands (full title: We Don't Want Your Tiny Hands, Anywhere Near Our Underpants) is a protest song by Fiona Apple, released on SoundCloud days prior to the 2017 Women's March (January 21, 2017), for which the song was created.[1] Composition and recording Fiona Apple in 2012 During the one-minute long chant, Apple repeats, We don't want your tiny hands / anywhere near our u...
Pour l’article ayant un titre homophone, voir Percent. Pour les articles homonymes, voir Persan (homonymie) et Farsi. Persanپارسیفارسی Pays Iran, Afghanistan, Pakistan, Tadjikistan, Azerbaïdjan[1], Ouzbékistan, Turkménistan Nombre de locuteurs Macro-langue[2] : 61 481 020 [3]Total[précision nécessaire] : 120 000 000[4]. Nom des locuteurs persophones, persanophones Typologie SOV, flexionnelle, accusative Écriture Alphabet perso-arabe Classi...
Family of flowering plants in the eudicot order Malpighiales, including violets and pansies ViolaceaeTemporal range: Campanian–recent[1][2] PreꞒ Ꞓ O S D C P T J K Pg N Viola banksii Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Malpighiales Family: ViolaceaeBatsch Type genus Viola Subfamilies See text. Violaceae is a family of flowering plants established in 1802, consisting of about 1000 species i...
2016年夏季奥林匹克运动会柬埔寨代表團柬埔寨国旗IOC編碼CAMNOC柬埔寨國家奧林匹克委員會2016年夏季奥林匹克运动会(里約熱內盧)2016年8月5日至8月21日運動員6參賽項目4个大项旗手开幕式、闭幕式:孙秀美(跆拳道)[1]历届奥林匹克运动会参赛记录(总结)夏季奥林匹克运动会1956196019641968197211976–1992199620002004200820122016202020241 以“高棉共和国”名义参赛 2016年夏季...
English aristocrat William Acton, Margot Bendir, Elizabeth Ponsonby, Harry Melville, and Babe Plunket-Greene at David Tennant's party 1928 Hon. Elizabeth Ponsonby (28 December 1900 – 31 July 1940) was an English aristocrat who was a prominent member of the Bright Young Things, well-connected socialites who featured heavily in the contemporary tabloid press for what were perceived to be their hedonistic antics. The daughter of Arthur Ponsonby, diplomat and Foreign Office ministe...
Rich, sweet vanilla dessert bar BlondiesHazelnut and white chocolate blondiesAlternative namesBlonde brownie, blondie bar, blondies, butterscotch brownie.TypeDessert barPlace of originUnited StatesMain ingredientsFlour, sugar, butter, eggs, baking powder, vanilla Cookbook: Blondies Media: Blondies Blondies are a type of dessert bar that is similar to brownies but with a different flavor. They are made with brown sugar instead of cocoa and are often baked in a pan, and then cut into ...
Untuk pantai di NTB, lihat Pantai Kuta, Lombok. artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Sunset di Pantai Kuta Pantai Kuta adalah sebuah tempat pariwisata yang terletak di kecamatan Kuta ...
Thomas MoranThomas Moran oleh Napoleon SaronyLahir(1837-02-12)12 Februari 1837Bolton, Lancashire, EnglandMeninggal25 Agustus 1926(1926-08-25) (umur 89)Santa Barbara, California, Amerika SeritKebangsaanAmerika SerikatDikenal atasLandscape paintingGerakan politikHudson River School, Rocky Mountain SchoolSuami/istriMary Nimmo Moran Thomas Moran (12 Februari 1837 – 25 Agustus 1926) adalah seorang pelukis dan pembuat grafis Amerika dari Hudson River School di New York yang ka...
Uni Ekonomi EurasiaЕвразийский Экономический Союзcode: ru is deprecated (Rusia)Еўразійскі эканамічны саюзcode: be is deprecated (Belarusian)Еуразиялық Экономикалық Одақcode: kk is deprecated (Kazakh) Bendera Lambang Pusat politikMoskowMinskAstanaBahasaRusiaBelarusiaKazakhAnggotaCalon anggota: Belarus Kazakhstan RusiaPemimpin• Komisioner Eurasia Viktor Khristenko Pendirian•...
Questa voce o sezione sull'argomento fiction televisive statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sugli argomenti fiction televisive d'avventura e fiction televisive statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i...
Psychological or sexual drive or energy For other uses, see Libido (disambiguation). Sex drive redirects here. For other uses, see Sex Drive (disambiguation). In psychology, libido (/lɪˈbiːdoʊ/; from the Latin libīdō, 'desire') is psychic drive or energy, usually conceived of as sexual in nature, but sometimes conceived of as including other forms of desire.[1] The term libido was originally used by the neurologist and pioneering psychoanalyst Sigmund Freud who began by employin...
Questa voce o sezione sull'argomento letteratura è ritenuta da controllare. Motivo: Voce che appare in alcuni tratti una ricerca originale e in buona parte si occupa della critica italiana, più che del tema generale Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sull'argomento letteratura non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da ...
国家公務員共済組合連合会 本部がある九段合同庁舎略称 KKR設立 1947年(昭和22年)種類 共済組合法人番号 2010005002559 法的地位 国家公務員共済組合法目的 年金事務、福利厚生本部 日本東京都千代田区九段南一丁目1番10号 九段合同庁舎ウェブサイト www.kkr.or.jpテンプレートを表示 国家公務員共済組合連合会(こっかこうむいんきょうさいくみあいれんごうかい、略号: KK...
Novospassky Bridge Novospassky Bridge (‹See Tfd›Russian: Новоспасский Мост, romanized: Novospasskiy Most) is a steel plate girder bridge that spans Moskva River, connecting Novospassky Monastery and Paveletsky rail terminal areas in Moscow, Russia (about 3 kilometers south-east from the Kremlin). It was built in 1911, as a triple-span steel arch bridge. Reconstruction in 2000 replaced arches with a simpler plate girder structure.[1] Note that the memorial plaq...
In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space P 3 {\displaystyle \mathbf {P} ^{3}} . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a...