Marcelo Romero
|
Read other articles:
Artículo principal: Clasificación de Conmebol para la Copa Mundial de Fútbol de 2018 Colombia4.º lugar Titular (2015-2016) Titular (2016-2017) Alternativo (2015-2017) Datos generales Asociación Federación Colombiana de Fútbol Confederación Conmebol Seudónimo Los Cafeteros, La Tricolor Ranking FIFA 10.º lugar (septiembre de 2017)[1] Entrenador José Pékerman (2012-) Estadio Metropolitano, Barranquilla Estadísticas Mejor resultado Colombia Colombia 3:1 Ecuador ...
Gedung Aji Baru KecamatanNegara IndonesiaProvinsiLampungKabupatenTulang BawangPemerintahan • Camat...Populasi (2022) • Total24.715 jiwa • Kepadatan259/km2 (670/sq mi)Kode pos34595Kode Kemendagri18.05.27 Kode BPS1808056 Luas95,36 km²Desa/kelurahan9 Gedung Aji Baru (aksara Lampung: ) adalah sebuah kecamatan di Kabupaten Tulang Bawang, provinsi Lampung, Indonesia. Kecamatan Gedung Aji Baru merupakan pemekaran dari Kecamatan Penawar Tama. Geogra...
Gareth Barry Barry bersama Aston VillaInformasi pribadiNama lengkap Gareth Barry[1]Tanggal lahir 23 Februari 1981 (umur 43)Tempat lahir Hastings, InggrisTinggi 1,83 m (6 ft 0 in)[2]Posisi bermain Gelandang BertahanInformasi klubKlub saat ini Everton(dipinjam dari Manchester City)Karier junior1995–1997 Brighton & Hove AlbionKarier senior*Tahun Tim Tampil (Gol)1997–2009 Aston Villa 365 (41)2009–2013 Manchester City 132 (6)2013–2017 Everton 129 (4...
For other uses, see Clearcut (disambiguation). Forestry/logging practice in which most or all trees in an area are uniformly cut down After a century of clearcutting, this forest, near the source of the Lewis and Clark River in Clatsop County, Oregon, is a patchwork. In each patch, most of the trees are the same age. Clearcutting, clearfelling or clearcut logging is a forestry/logging practice in which most or all trees in an area are uniformly cut down. Along with shelterwood and seed tree h...
Pour les articles homonymes, voir Marais (homonymie) et Villain. Cet article possède un paronyme, voir Jean Marras. Jean Marais Jean Marais en 1948, studio Harcourt. Données clés Nom de naissance Jean Alfred Villain-Marais Naissance 11 décembre 1913Cherbourg[1] (Manche, France) Nationalité Française Décès 8 novembre 1998 (à 84 ans)Cannes (Alpes-Maritimes, France) Profession Acteur Films notables L'Éternel Retour La Belle et la Bête Le BossuLe CapitanLe Capitaine Fracasse Fant...
Multi-use path along the waterfront in Toronto, Canada Martin Goodman TrailThe Humber Bay Arch Bridge is part of the trailLength56 km (35 mi)LocationTorontoEstablished1984Userunning, jogging, cycling and inline skatingSeasonYear-round The Martin Goodman Trail is a 56 km (35 mi)[1][2] multi-use path[3][4] along the waterfront in Toronto, Ontario, Canada. It traverses the entire lake shore from one end of the city to the other, from Humber Bay...
Tjutjup Suparna Wali Kota Balikpapan ke-7Masa jabatan1991–2001WakilImdaad HamidPendahuluHermain OkolPenggantiImdaad Hamid Informasi pribadiLahir(1945-05-28)28 Mei 1945Bandung, Pendudukan JepangMeninggal4 Februari 2020(2020-02-04) (umur 75)Balikpapan, Kalimantan TimurKebangsaanIndonesiaSuami/istriYetti NoorSunting kotak info • L • B Kol. Inf. H. Tjutjup Suparna (28 Mei 1945 – 4 Februari 2020) adalah wali kota Balikpapan yang menjabat selama dua periode,...
Alan batu Shorea albida Status konservasiRentanIUCN33099 TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladmalvidsOrdoMalvalesFamiliDipterocarpaceaeSubfamiliDipterocarpoideaeGenusShoreaSpesiesShorea albida Symington lbs Shorea albida atau alan batu (disebut, bersama dengan beberapa spesies lain dalam genus Shorea, meranti merah muda ) adalah spesies pohon dalam keluarga Dipterocarpaceae . Ia endemik d...
العلاقات المغربية النمساوية المغرب النمسا المغرب النمسا تعديل مصدري - تعديل العلاقات المغربية النمساوية هي العلاقات الثنائية التي تجمع بين المغرب والنمسا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة ا�...
Varna (class) in Hinduism, one of four castes Not to be confused with Brahman (a metaphysical concept in Hinduism), Brahma (a Hindu god), or Brahmana (a layer of text in the Vedas). For other uses, see Brahmin (disambiguation). Part of a series onHinduism Hindus History OriginsHistorical Hindu synthesis (500/200 BCE–300 CE) History Indus Valley Civilisation Historical Vedic religion Dravidian folk religion Śramaṇa Tribal religions in India Traditional Itihasa-Purana Epic-Puranic royal ge...
COVID-19 SARS-CoV-2 3CL-protease-inhibitor antiviral drug EnsitrelvirClinical dataTrade namesXocovaOther namesS-217622Routes ofadministrationBy mouthATC codeJ05AE11 (WHO) Legal statusLegal status JP: Rx-only[1] Identifiers IUPAC name 1-(2,4,5-Trifluorobenzyl)-3-[(1-methyl-1H-1,2,4-triazol-3-yl)methyl]-(6E)-6-[(6-chloro-2-methyl-2H-indazol-5-yl)imino]-1,3,5-triazinane-2,4-dione CAS Number2647530-73-02757470-18-9PubChem CID162533924UNIIPX665RAA3HKEGGD12353Chemical and physical...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Djibouti Telecom – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this message) Djibouti TelecomIndustryTelecommunicationsHeadquartersDjibouti, DjiboutiProductsMobile servicesInternet servicesFixed lineDigital televisionServicesmobile,fixe...
Questa voce sull'argomento sistematica organica è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Struttura del gruppo acetile. In chimica organica, l'acetile (spesso è abbreviato come Ac) è un gruppo funzionale composto dalla parte acilica dell'acido acetico (-COCH3). Ruolo biologico In natura è spesso associato a macromolecole come il coenzima A oppure ad enzimi adibiti al suo metabolismo come il complesso della piruvato deidrogenasi. L'acetile...
North-south train route in China Beijing–Kowloon railway京九铁路京九鐵路The Shoupakou level crossing of Beijing–Kowloon railway near Guang'anmen, BeijingOverviewStatusIn operationLocaleBeijing, Hebei, Shandong, Henan, Anhui, Hubei, Jiangxi, Guangdong, Hong KongTerminiBeijing WestHung HomServiceTypeHeavy railSystemChina RailwayOperator(s)China RailwayHistoryOpened1 September 1996; 27 years ago (1996-09-01)TechnicalLine length2,311 km (1,436 mi)Track gaug...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2018) مقاطعة غالاتين الإحداثيات 38°46′N 84°52′W / 38.76°N 84.86°W / 38.76; -84....
American journalist, editor, and publisher (1893–1976) Freda KirchweyBornMary Frederika Kirchwey(1893-09-26)September 26, 1893Lake Placid, New YorkDiedJanuary 3, 1976(1976-01-03) (aged 82)Alma materBarnard CollegeOccupationJournalistSpouseEvans Clark Mary Frederika Freda Kirchwey (September 26, 1893 – January 3, 1976) was an American journalist, editor, and publisher strongly committed throughout her career to liberal causes (anti-Fascist, pro-Soviet, anti-anti-communist). F...
Fotboll vid internationella öspelen 2023 (damer)EvenemangsfaktaDatum9–14 juli 2023Värdnation GuernseyDeltagareAntal lag10StatistikMatcher19Mål85 (4,5 per match)0 Vinnare Bermuda (2:a titeln) Finalist Yttre Hebriderna Trea Isle of Man Föregående Följande 2017 Gotland2019 Anglesey (IGFT, inofficiell) 2025 Fotboll vid internationella öspelen 2023 (damer) spelades på Guernsey mellan den 9 och 14 juli 2023. Nationer Anglesey Bermuda Guern...
Special forces regiment of the Malaysian Army This article is about Malaysian Army's special forces. For the TV series, see Gerak Khas (TV series). Gerak KhasGrup Gerak KhasGGK InsigniaFounded7 May 1965; 59 years ago (1965-05-07)Country MalaysiaAllegianceYang di-Pertuan Agong (King of Malaysia)Branch Malaysian ArmyTypeSpecial forcesSizeClassifiedNickname(s)'Komando' (English: Commando)'Beret Hijau' (English: Green Beret)Motto(s)Cepat dan Cergas(English: Fast and Ag...
xtsPhân cấp hành chính Hoa KỳCác tiểu bang Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West...
Треугольник Теорема о сумме углов треугольника — классическая теорема евклидовой геометрии. Содержание 1 Формулировка 2 Доказательство 3 Следствия 4 Вариации и обобщения 4.1 Многоугольники 4.2 Обобщение для симплексов 4.3 В неевклидовых геометриях 5 Примечания 6 Литерату...