A enerxía de ionización, tamén chamada, impropiamente, potencial de ionización é a enerxía que hai que subministrar a un átomo neutro, gasoso e en estado fundamental, para arrincarlle o electrón máis debilmente retido.
Podemos expresalo así:
Átomo neutro gasoso + Enerxía -----> Ión positivo gasoso + e -
Sendo esta enerxía a correspondente á primeira ionización.
A segunda enerxía de ionización representa a enerxía que se precisa para arrincar o segundo electrón; esta segundo enerxía de ionización é sempre maior que a primeira, pois o volume dun ión positivo é menor que o do átomo e a forza electrostática sobre o electrón que queremos arrincar é maior no ión positivo que no átomo, xa que se conserva a mesma carga nuclear.
A enerxía de ionización expresase en electrón-volt ou en jouls (ou kilojouls) por cada mol de átomos (kJ/mol).
1 eV = 1,6 . 10 -19 coulombs . 1 volt = 1,6 . 10-19jouls
Se a enerxía dun átomo fose de 1 eV, para ionizar un mol deses átomos (6.22x1023 átomos) serían necesarios 96,5 kJ.
Como norma xeral, na táboa periódica, nos elementos dunha mesma familia ou grupo, a enerxía de ionización diminúe a medida que aumenta o número atómico, é dicir, de arriba a abaixo, tal como se representan habitualmente as táboas periódicas.
Nos metais alcalinos , por exemplo, o elemento de maior enerxía de ionización é o litio e o de menor o cesio. Isto é fácil de explicar, pois o último electrón sitúase en orbitais situados cada vez máis lonxe do núcleo e, á súa vez, os electróns das capas interiores exercen un efecto de pantalla sobre a atracción nuclear sobre os electróns periféricos. Esta norma deixa de cumprirse para o francio.
Nos elementos dun mesmo período da táboa periódica, a enerxía de ionización aumenta a medida que aumenta o número atómico, é dicir, de esquerda a dereita.
Isto debese a que o electrón diferenciador (o último en enerxía) dos elementos dun período está situado no mesmo nivel enerxético, mentres que a carga do núcleo aumenta, polo que será maior a forza de atracción, e, á súa vez, o número de capas interiores non varía e o efecto pantalla non aumenta.
Isto último non é unha regra, senón unha orientación, xa que o aumento non é continuo, pois no caso do berilio e do nitróxeno, por exemplo, téñense valores máis altos do que nun principio sería de esperar por comparación cos outros elementos do mesmo período. Este aumento debese a estabilidade que presentan as configuracións s2 e s2 p3 , respectivamente.
A enerxía de ionización máis elevada correspóndelle ós gases nobres, xa que a súa configuración electrónica é a máis estable, e polo tanto haberá que proporcionar máis enerxía para arrincarlles electróns.
Táboa periódica de enerxías de ionización, en kJ/mol