Un ensemble de n vecteurs libres de et un ensemble de n vecteurs libres de l'espace dual associé à , tel que , . Les sont appelés « coracines », tandis que les sont appelés « racines ».
L'algèbre de Kac-Moody est l'algèbre de Lie définie par les vecteurs générateurs et et les éléments de ainsi que les relations :
Une algèbre de Lie (de dimension infinie ou non) sur le corps des réels est également considérée comme une algèbre de Kac-Moody si sa complexifiée est une algèbre de Kac-Moody.
Si g est un élément de l'algèbre de Kac-Moody tel que , où est un élément de , alors on dit que g a un poids . L'algèbre de Kac-Moody peut être diagonalisée en vecteurs propres de poids. La sous-algèbre de Cartan a un poids nul, a un poids et a un poids . Si le crochet de Lie de deux vecteurs propres est non nul, alors son poids est la somme de leurs poids. La condition signifie simplement que les sont des racines simples.
Types d'algèbres de Kac-Moody
La matrice de Cartan associée à l'algèbre de Kac-Moody peut être décomposée comme produit de deux matrices D et S où D est une matrice diagonale positive et S une matrice symétrique.
La nature de S détermine le type de l'algèbre de Kac-Moody dont il est question :
Il existe aussi une autre classe d'algèbre de Kac Moody appelée algèbres hyperboliques. La matrice S ne peut jamais être définie négative ni semi-définie négative puisque ses coefficients diagonaux sont positifs.
Ces types d'algèbres de Kac Moody sont également caractérisés par leur diagramme de Dynkin :
on connaît la liste complète des diagrammes de Dynkin correspondant aux algèbres de Lie simples ;
lorsque tout sous-diagramme du diagramme de Dynkin de est le diagramme d'une algèbre de Lie simple, alors est affine ;
lorsque tout sous diagramme du diagramme de Dynkin de est le diagramme d'une algèbre affine, alors est hyperbolique.
Les algèbres affines sont les mieux connues des algèbres de Kac-Moody.
Références
(en) A. J. Wassermann, Kac-Moody and Virasoro Algebras, arXiv:1004.1287
(en) V. G. Kac, « Simple irreducible graded Lie algebras of finite growth », Math. USSR Izv., 2e série, , p. 1271-1311, Izv. Akad. Nauk USSR Ser. Mat., vol. 32, 1968, p. 1923-1967
(en) R. V. Moody, « A new class of Lie algebras », J. of Algebra, vol. 10, , p. 211-230