Trimethylglycine is an amino acid derivative with the formula (CH3)3N+CH2CO−2. A colorless, water-soluble solid, it occurs in plants.[5] Trimethylglycine is a zwitterion: the molecule contains both a quaternary ammonium group and a carboxylate group. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because it was discovered in sugar beets (Beta vulgaris subsp. vulgaris).[6] Several other betaines are now known.
Medical uses
Betaine, sold under the brand name Cystadane is indicated for the adjunctive treatment of homocystinuria, involving deficiencies or defects in cystathionine beta-synthase (CBS), 5,10-methylene-tetrahydrofolate reductase (MTHFR), or cobalamin cofactor metabolism (cbl).[2][3][4][7]
The most common side effect is elevated levels of methionine in the blood.[3]
The EU has authorized the health claim that betaine "contributes to normal homocysteine metabolism.".[8]
Trimethylglycine is an osmolyte, a water-soluble salt-like substance. Sugar beet was cultivated from sea beet, which requires osmolytes in order to survive the salty soils of coastal areas. Trimethylglycine also occurs in high concentrations (~10 mM) in many marine invertebrates, such as crustaceans and molluscs. It serves as a appetitive attractant to generalist carnivores such as the predatory sea slugPleurobranchaea californica.[13]
Methyl donor
Trimethylglycine is a cofactor in methylation, a process that occurs in all mammals. These processes include the synthesis of neurotransmitters such as dopamine and serotonin. Methylation is also required for the biosynthesis of melatonin and the electron transport chain constituent coenzyme Q10, as well as the methylation of DNA for epigenetics. One step in the methylation cycle is the remethylation of homocysteine, a compound which is naturally generated during demethylation of the essential amino acid methionine. Despite its natural formation, homocysteine has been linked to inflammation, depression, specific forms of dementia, and various types of vascular disease. The remethylation process that detoxifies homocysteine and converts it back to methionine can occur via either of two pathways. The pathway present in virtually all cells involves the enzyme methionine synthase (MS), which requires vitamin B12 as a cofactor, and also depends indirectly on folate and other B vitamins. The second pathway (restricted to liver and kidney in most mammals) involves betaine-homocysteine methyltransferase (BHMT) and requires trimethylglycine as a cofactor. During normal physiological conditions, the two pathways contribute equally to removal of homocysteine in the body.[14] Further degradation of betaine, via the enzyme dimethylglycine dehydrogenase produces folate, thus contributing back to methionine synthase. Betaine is thus involved in the synthesis of many biologically important molecules, and may be even more important in situations where the major pathway for the regeneration of methionine from homocysteine has been compromised by genetic polymorphisms such as mutations in the MS gene.
Agriculture and aquaculture
Trimethylglycine is used as a supplement for both animals and plants.[5]Processingsucrose from sugar beets yields glycine betaine as a byproduct. The economic significance of trimethylglycine is comparable to that of sugar in sugar beets.[15]
Salmon farms apply trimethylglycine to relieve the osmotic pressure on the fishes' cells when workers transfer the fish from freshwater to saltwater.[15][16]
Trimethylglycine supplementation decreases the amount of adipose tissue in pigs; however, research in human subjects has shown no effect on body weight, body composition, or resting energy expenditure.[17]
Nutrition
Nutritionally, betaine is not needed when sufficient dietary choline is present for synthesis.[18] When insufficient betaine is available, elevated homocysteine levels and decreased SAM levels in blood occur. Supplementation of betaine in this situation would resolve these blood marker issues, but not compensate for other functions of choline.[19]
Although trimethylglycine supplementation decreases the amount of adipose tissue in pigs, research on human subjects has shown no effect on body weight, body composition, or resting energy expenditure when used in conjunction with a low calorie diet.[17] The US Food and Drug Administration (FDA) approved betaine trimethylglycine (also known by the brand name Cystadane) for the treatment of homocystinuria, a disease caused by abnormally high homocysteine levels at birth.[22] Trimethylglycine is also used as the hydrochloridesalt (marketed as betaine hydrochloride or betaine HCl). Betaine hydrochloride was sold over-the-counter (OTC) as a purported gastric aid in the United States. US Code of Federal Regulations, Title 21, Section 310.540, which became effective in November 1993, banned the marketing of betaine hydrochloride as a digestive aid due to insufficient evidence to classify it as "generally recognized as safe and effective" for that specified use.[23]
Side effects
Trimethylglycine supplementation may cause diarrhea, bloating, cramps, dyspepsia, nausea or vomiting.[24] Although rare, it can also causes excessive increases in serum methionine concentrations in the brain, which may lead to cerebral edema, a life-threatening condition.[24]
Trimethylglycine supplementation lowers homocysteine but also raises LDL-cholesterol in obese individuals and renal patients.[25]
^ abc"Cystadane EPAR". European Medicines Agency. 17 September 2018. Archived from the original on 1 July 2022. Retrieved 29 July 2022. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
^ ab"Amversio EPAR". European Medicines Agency. 21 February 2022. Archived from the original on 30 July 2022. Retrieved 29 July 2022. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
^ abAshraf M, Foolad M (2007). "Roles of glycine betaine and proline in improving plant abiotic stress resistance". Environmental and Experimental Botany. 59 (2): 206–216. doi:10.1016/j.envexpbot.2005.12.006.
^K.K. Tiihonen, K. Riihinen, M. Lyyra, E. Sarkkinen, S.A.S. Craig, P. Tenning (2014). "12 - Authorised EU health claims for betaine". In Sadler M (ed.). Foods, Nutrients and Food Ingredients with Authorised EU Health Claims. Woodhead Publishing. pp. 251–273. ISBN978-0-85709-842-9. Retrieved 19 February 2024. The European Food Safety Authority (EFSA) agreed that there is sufficient substantiation of the health claim for betaine concerning its contribution to normal homocysteine metabolism (EFSA, 2011a).
^Chern MK, Pietruszko R (1999). "Evidence for mitochondrial localization of betaine aldehyde dehydrogenase in rat liver: purification, characterization, and comparison with human cytoplasmic E3 isoenzyme". Biochemistry and Cell Biology. 77 (3): 179–187. doi:10.1139/o99-030. PMID10505788.
^ ab"Betaine", LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012, PMID31644082, retrieved 14 July 2023