Talk:Almost complex manifold
Incorrect statement"An ordinary almost complex structure is a choice of a half-dimensional subspace of each fiber of the complexified tangent bundle TM." -- This is not correct.
i somewhat dislike this sentence: "equipped with a structure that defines a multiplication by i on each tangent space". the almost complex structure is an object defined on a real manifold, whose tangent spaces are real vector spaces. what meaning does multiplication by i have on such a space? perhaps it is a good description to give an intuitive understanding, perhaps it just needs a qualifier?Lethe also, i am starting to think that it may be better if almost complex structure and almost complex manifold were separate articles. what do you think? (you=whoever is reading this)Lethe I was just trying to give a informal introductory sentence or two on what an almost complex structure is before defining it. Technically, the introduction of an almost complex structure, does allow for multiplication by i on TpM via
This turns Tp from a 2n dimensional real vector space into a n dimensional complex vector space. At this point, I don't see a reason to separate the manifold page from the structure that defines it. It seems the two go hand in hand. Perhaps if the article gets overly large. -- Fropuff 20:32, 2004 Mar 12 (UTC)
Complex/Almost complexThis part seems to be missleading, instead of talking about ... for complex structure on an almost complex mnfld you did just test for almost complex structure to be non complex I'm not a specialist, so can not fix it correctly but maybe you can, or at least clearify it. existence of an almost complex structure on a real manifold is a necessary, but not sufficient, condition for the existence of a complex structure. The obstruction to the existence of a complex structure can be codified in a rank (1,2) tensor, called the Nijenhuis tensor. again it is not an obstruction, one can take a complex structure and deform it locally and get an almost complex and it should be noted that not any almcomplex mnfld are of that type Also it showld be a couple of words on simplectic-Riemannian connection with use of almost complex structure... Tosha 01:30, 13 Mar 2004 (UTC)
Tosha - your text makes it seem like vanishing Nijenhuis tensor is the definition of an integrable almost complex structure. i think a more appropriate definition is closure of the Lie bracket on the space of holomorphic vector fields. this is what the word integrable means. then the vanishing of the Nijenhuis tensor is a useful theorem about integrable almost complex structures, rather than a definition. in your text, you seem to want to give two different definitions of integrable. i think the most clear way to convey the situation is to state these equivalent conditions: 1. an almost complex manifold admits a complex structure (which is then uniquely determined by the almost complex structure), 2. the Nijenhuis tensor vanishes, 3. the almost complex structure is integrable (the Lie bracket closes on holomorphic vectors) 4. the almost complex structure is covariantly constant
also, you deleted my comment about how the existence of a J tensor implies that the tangent space (and therefore also the manifold) must be even dimensional. - Lethe I partly agree, change it if you want, it is not exacly my text, I just compactified an older one. For me integrable means that it defines complex structure, I think it should be the very base definition and it stated in the first par. of the subsection Tosha 15:20, 13 May 2004 (UTC) I tend to agree Lethe. We should be sure of what the word integrable actually means in this context. Although, I think point (4) in your list should be excluded. It applies only after the manifold is equipped with a metric. -- Fropuff 16:31, 2004 May 13 (UTC) I think integrable used to mean the integrability condition - but a long time ago (eg Weil's book on Kahler manifolds, from the 1950s). So perhaps now things have moved on. Charles Matthews 16:54, 13 May 2004 (UTC) I am a little uncomfortable with the phrase "linear map J: TM→TM". a tangent bundle is not a vector space. it shouldn't have linear maps. maybe it should read "bundle morphism" instead, or else we should just say "restricts to linear map Jp: TpM→TpM at each point p in M"?Lethe OK, i have added some stuff:
Holomorphic?The section on differential topology defines holomorphic and antiholomorphic vector fields. Holomorphic vector bundles are usually defined only over complex manifolds. It seems wrong to me to call TM+ a holomorphic vector bundle when M is only an almost complex manifold. In what sense in the projection map TM+ → M holomorphic? Is this naming standard? -- Fropuff 07:05, 2005 Feb 27 (UTC)
I know these vector fields exist (although I'm not sure what you mean by a locally holomorphic vector field). My concern is whether or not they should be called holomorphic/antiholomorphic unless J is integrable. Better to call them vector fields of type (1,0) and type (0,1) or something similiar. I have found one author [1] who calls them J-holomorphic vector fields. -- Fropuff Fropuff 02:38, 2005 Mar 3 (UTC)
[I must confess to drinking and editing myself — funny how it all seemed so clear at the time.] Of the sources I've checked (mostly symplectic topology books) I've only seen Nakahara call these fields holomorphic, and I've never really trusted that book when it comes to rigor. I've been thinking about almost complex structures lately so I may do some more work on this article. I'll try to fix the problems you mentioned above (assuming you don't get around to it first). -- Fropuff 03:36, 2005 Mar 3 (UTC) what does integrable mean?I'm currently fixing this article (about time). But I'm having a problem. I think we've discussed this in the past, but we have to decide what "integrable" actually means. Right now, the article states that an almost complex structure is integrable if it arises from a bona fide complex structure, a view that Tosha was advocating a long time ago. But with that convention, the Newlander-Nirenberg theorem becomes tautologous sounding (an almost complex structure is integrable iff it is integrable). I've seen different books use different definitions of integrable: Nijenhuis vanishes, Lie bracket closes, exterior derivative decomposes. I propose that the first of those be taken as the def. -Lethe | Talk 20:41, July 14, 2005 (UTC)
This doesn't seem rightThis statement:
doesn't seem right to me. For example, any almost complex manifold has a globally defined J tensor, while it may not be complex. See current revision for a better attempt. It's quite possible that I wrote that wrong statement. -Lethe | Talk 20:48, July 14, 2005 (UTC)
rewriteOK, I've rewritten a bunch of stuff, and I believe I have removed all the stuff that was known to be incorrect. -Lethe | Talk 20:49, July 14, 2005 (UTC) Remaining errorsThe page is still not correct. It gives two different definitions of integrable (as the existence of local holomorphic coordinates, and then as the vanishing of the Nijenhuis tensor). I believe that simply removing the sentence "An almost complex structure is called integrable if this tensor vanishes for all smooth vector fields X and Y on M (here [·, ·] denotes the Lie bracket of vector fields)." will solve the problem. Then there is one definition of integrable, followed by the statement of the NN theorem. As a matter of opinion, I strongly think that integrable should not be defined (as here) as the existence of local holomorphic coordinates. Rather, integrable means that the holomorphic tangent space is closed under the Lie bracket (as Charles Matthews says above). Then the NN theorem states that a manifold with an integrable almost complex structure admits local holomorphic coordinates. -Chris 3 April 2006 deletion of nonexampleprior to my edit, the page claimed that surfaces of general type failing to meet certain restrictions on their chern numbers furnish examples of almost complex manifolds with non-integrable complex structures on their tangent bundles. while it is probably true that one can deform the complex structure on the tangent bundle of such a surface given to you by the definition of complex surfaces to give a nonintegrable structure, that's not something that's going to be detected by the chern classes. bottom line is, the sentence is either flat out nonsense or the editor who wrote it made some sort of error in committing it to writing. since it's unclear what was meant and no one seems to know, seems like it ought to be removed. it would be nice to have some examples of the sort of thing the sentence tried to address, but i'm going to have to leave that to someone else. 140.254.93.115 (talk) 16:33, 15 October 2008 (UTC) ChangesI made these changes: Given any linear map A on each tangent space of M; i.e., A is a tensor field of rank (1,1), then the Nijenhuis tensor is a tensor field of rank (1,2) given by The individual expressions on the right depend on the choice of the smooth vector fields X and Y, but the left side actually depends only on the pointwise values of X and Y, which is why N_A is a tensor. This is also clear from the component formula In terms of the Frolicher-Nijenhuis bracket, which generalizes the Lie bracket of vector fields, the Nijenhuis tensor N_A is just one-half of [A,A]. First of all, the statement about smooth X and Y is not correct. The local values suffice: that is essential for the concept of a tensor. (Too bad, the page on tensors does not deal with this matter.) Second. the text I propose places the N tensor in the context of the F-N bracket. The page on the F-N bracket only casually mentions the relationship. MY10SOR (talk) 18:58, 13 September 2010 (UTC) MY10SOR (I am new here, please forgive the intrusion.)
6-sphereI started a discussion here that relates to this article as well... Franp9am (talk) 20:34, 23 December 2015 (UTC) Higgs and spontaneous symmetry breakingThe above-mentioned link in the 6-sphere has this (to me) astounding paragraph:
I find this to be quite remarkable, and worth a detailed exposition here, or somewhere. I have a good-enough imagination that I can imagine how this might be true (plus I know what Higgs fields are, I'm unclear why J is the Higgs field, instead of being just the classical solution to one, or some patch near the minimum...) But I find that imagination is unsuitable, when something more explicit can be stated. — Preceding unsigned comment added by 67.198.37.16 (talk) 21:44, 7 May 2019 (UTC) Worked examples needed.This article could be improved by adding sections on the following:
67.198.37.16 (talk) 02:55, 8 May 2019 (UTC) Link clarityIn the Jean’s complex manifold solution the reader was sent to explanations about manifolds and complex numbers at first, without much information how does it correspond to real manifolds. In my solution the reader is immediately directed to the word “integrable”. Incnis Mrsi (talk) 11:57, 11 September 2019 (UTC) |