Shear modulus

Shear modulus
Common symbols
G, S, μ
SI unitPa
Derivations from
other quantities
G = τ / γ = E / [2(1 + ν)]
Shear strain

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:[1]

where

= shear stress
is the force which acts
is the area on which the force acts
= shear strain. In engineering , elsewhere
is the transverse displacement
is the initial length of the area.

The derived SI unit of shear modulus is the pascal (Pa), although it is usually expressed in gigapascals (GPa) or in thousand pounds per square inch (ksi). Its dimensional form is M1L−1T−2, replacing force by mass times acceleration.

Explanation

Material Typical values for
shear modulus (GPa)
(at room temperature)
Diamond[2] 478.0
Steel[3] 79.3
Iron[4] 52.5
Copper[5] 44.7
Titanium[3] 41.4
Glass[3] 26.2
Aluminium[3] 25.5
Polyethylene[3] 0.117
Rubber[6] 0.0006
Granite[7][8] 24
Shale[7][8] 1.6
Limestone[7][8] 24
Chalk[7][8] 3.2
Sandstone[7][8] 0.4
Wood 4

The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law:

  • Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
  • the Poisson's ratio ν describes the response in the directions orthogonal to this uniaxial stress (the wire getting thinner and the column thicker),
  • the bulk modulus K describes the material's response to (uniform) hydrostatic pressure (like the pressure at the bottom of the ocean or a deep swimming pool),
  • the shear modulus G describes the material's response to shear stress (like cutting it with dull scissors).

These moduli are not independent, and for isotropic materials they are connected via the equations[9]

The shear modulus is concerned with the deformation of a solid when it experiences a force parallel to one of its surfaces while its opposite face experiences an opposing force (such as friction). In the case of an object shaped like a rectangular prism, it will deform into a parallelepiped. Anisotropic materials such as wood, paper and also essentially all single crystals exhibit differing material response to stress or strain when tested in different directions. In this case, one may need to use the full tensor-expression of the elastic constants, rather than a single scalar value.

One possible definition of a fluid would be a material with zero shear modulus.

Shear waves

Influences of selected glass component additions on the shear modulus of a specific base glass.[10]

In homogeneous and isotropic solids, there are two kinds of waves, pressure waves and shear waves. The velocity of a shear wave, is controlled by the shear modulus,

where

G is the shear modulus
is the solid's density.

Shear modulus of metals

Shear modulus of copper as a function of temperature. The experimental data[11][12] are shown with colored symbols.

The shear modulus of metals is usually observed to decrease with increasing temperature. At high pressures, the shear modulus also appears to increase with the applied pressure. Correlations between the melting temperature, vacancy formation energy, and the shear modulus have been observed in many metals.[13]

Several models exist that attempt to predict the shear modulus of metals (and possibly that of alloys). Shear modulus models that have been used in plastic flow computations include:

  1. the Varshni-Chen-Gray model developed by[14] and used in conjunction with the Mechanical Threshold Stress (MTS) plastic flow stress model.[15][16]
  2. the Steinberg-Cochran-Guinan (SCG) shear modulus model developed by[17] and used in conjunction with the Steinberg-Cochran-Guinan-Lund (SCGL) flow stress model.
  3. the Nadal and LePoac (NP) shear modulus model[12] that uses Lindemann theory to determine the temperature dependence and the SCG model for pressure dependence of the shear modulus.

Varshni-Chen-Gray model

The Varshni-Chen-Gray model (sometimes referred to as the Varshni equation) has the form:

where is the shear modulus at , and and are material constants.

SCG model

The Steinberg-Cochran-Guinan (SCG) shear modulus model is pressure dependent and has the form

where, μ0 is the shear modulus at the reference state (T = 300 K, p = 0, η = 1), p is the pressure, and T is the temperature.

NP model

The Nadal-Le Poac (NP) shear modulus model is a modified version of the SCG model. The empirical temperature dependence of the shear modulus in the SCG model is replaced with an equation based on Lindemann melting theory. The NP shear modulus model has the form:

where

and μ0 is the shear modulus at absolute zero and ambient pressure, ζ is an area, m is the atomic mass, and f is the Lindemann constant.

Shear relaxation modulus

The shear relaxation modulus is the time-dependent generalization of the shear modulus[18] :

.

See also

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "shear modulus, G". doi:10.1351/goldbook.S05635
  2. ^ McSkimin, H.J.; Andreatch, P. (1972). "Elastic Moduli of Diamond as a Function of Pressure and Temperature". J. Appl. Phys. 43 (7): 2944–2948. Bibcode:1972JAP....43.2944M. doi:10.1063/1.1661636.
  3. ^ a b c d e Crandall, Dahl, Lardner (1959). An Introduction to the Mechanics of Solids. Boston: McGraw-Hill. ISBN 0-07-013441-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ Rayne, J.A. (1961). "Elastic constants of Iron from 4.2 to 300 ° K". Physical Review. 122 (6): 1714–1716. Bibcode:1961PhRv..122.1714R. doi:10.1103/PhysRev.122.1714.
  5. ^ Material properties
  6. ^ Spanos, Pete (2003). "Cure system effect on low temperature dynamic shear modulus of natural rubber". Rubber World.
  7. ^ a b c d e Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.
  8. ^ a b c d e Pariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.
  9. ^ [Landau LD, Lifshitz EM. Theory of Elasticity, vol. 7. Course of Theoretical Physics. (2nd Ed) Pergamon: Oxford 1970 p13]
  10. ^ Shear modulus calculation of glasses
  11. ^ Overton, W.; Gaffney, John (1955). "Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper". Physical Review. 98 (4): 969. Bibcode:1955PhRv...98..969O. doi:10.1103/PhysRev.98.969.
  12. ^ a b Nadal, Marie-Hélène; Le Poac, Philippe (2003). "Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: Analysis and ultrasonic validation". Journal of Applied Physics. 93 (5): 2472. Bibcode:2003JAP....93.2472N. doi:10.1063/1.1539913.
  13. ^ March, N. H., (1996), Electron Correlation in Molecules and Condensed Phases, Springer, ISBN 0-306-44844-0 p. 363
  14. ^ Varshni, Y. (1970). "Temperature Dependence of the Elastic Constants". Physical Review B. 2 (10): 3952–3958. Bibcode:1970PhRvB...2.3952V. doi:10.1103/PhysRevB.2.3952.
  15. ^ Chen, Shuh Rong; Gray, George T. (1996). "Constitutive behavior of tantalum and tantalum-tungsten alloys". Metallurgical and Materials Transactions A. 27 (10): 2994. Bibcode:1996MMTA...27.2994C. doi:10.1007/BF02663849. S2CID 136695336.
  16. ^ Goto, D. M.; Garrett, R. K.; Bingert, J. F.; Chen, S. R.; Gray, G. T. (2000). "The mechanical threshold stress constitutive-strength model description of HY-100 steel" (PDF). Metallurgical and Materials Transactions A. 31 (8): 1985–1996. Bibcode:2000MMTA...31.1985G. doi:10.1007/s11661-000-0226-8. S2CID 136118687. Archived from the original on September 25, 2017.
  17. ^ Guinan, M; Steinberg, D (1974). "Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements". Journal of Physics and Chemistry of Solids. 35 (11): 1501. Bibcode:1974JPCS...35.1501G. doi:10.1016/S0022-3697(74)80278-7.
  18. ^ Rubinstein, Michael, 1956 December 20- (2003). Polymer physics. Colby, Ralph H. Oxford: Oxford University Press. p. 284. ISBN 019852059X. OCLC 50339757.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae Notes

There are two valid solutions.
The plus sign leads to .

The minus sign leads to .

Cannot be used when
2D formulae Notes
Cannot be used when



Read other articles:

States and union territories of India ordered by Area Population GDP (per capita) Abbreviations Access to safe drinking water Availability of toilets Capitals Child nutrition Crime rate Ease of doing business Electricity penetration Exports Fertility rate Forest cover Highest point HDI Home ownership Household size Human trafficking Institutional delivery Life expectancy at birth Literacy rate Media exposure Number of vehicles Number of voters Open defecation Origin of name Past population Pl...

 

Di antara delapan planet dan sembilan planet katai yang ada di Tata Surya, diketahui terdapat enam planet dan tujuh planet katai yang dikelilingi oleh paling sedikitnya 290 satelit alami. Setidaknya 19 di antaranya berukuran cukup besar sehingga memiliki bentuk bulat karena pengaruh gravitasi; semuanya tertutup oleh kerak es kecuali Bulan di Bumi dan Io di Jupiter.[1] Beberapa satelit alami terbesar telah mencapai kesetimbangan hidrostatik sehingga dapat dianggap sebagai planet katai ...

 

Peta wilayah karesidenan Cirebon (setelah Indonesia merdeka) Karesidenan Cirebon atau bekas Karesidenan Cirebon yaitu wilayah administratif pemerintahan zaman Hindia Belanda dan zaman Inggris yang meliputi wilayah bekas kesultanan Cirebon setelah lepasnya wilayah Krawang sebelum tahun 1677 ketika sultan Cirebon pada saat itu Pangeran Abdul Karim (Girilaya) dan kedua putranya yaitu Pangeran Martawijaya ditahan Mataram dan wali sultan Cirebon yang dijabat pangeran Wangsakerta didesak oleh Amang...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Penghapus – berita · surat kabar · buku · cendekiawan · JSTOR Penghapus (juga disebut setip) merupakan salah satu perlengkapan alat tulis yang merupakan karet lembut yang mampu menghilangkan tanda yang d...

 

MontenegroJulukanHrabri SokoliAsosiasiAsosiasi Sepak Bola Montenegro (FSCG)KonfederasiUEFA (Eropa)Pelatih Robert ProsinečkiKaptenStevan JovetićPenampilan terbanyakFatos Bećiraj (86)Pencetak gol terbanyakStevan Jovetić (35)Stadion kandangStadion Kota Podgorica, PodgoricaKode FIFAMNEPeringkat FIFATerkini 70 2 (4 April 2024)[1]Tertinggi16 (Juni 2011)Terendah199 (Juni 2007)Peringkat EloTerkini61 Warna pertama Warna kedua Pertandingan internasional pertamaMontenegro  2 - 1 Hungari...

 

AirportWaterfall Seaplane BaseIATA: KWFICAO: noneFAA LID: KWFSummaryAirport typePublicOwnerWaterfall Cannery ResortServesWaterfall, AlaskaElevation AMSL0 ft / 0 mCoordinates55°17′47″N 133°14′36″W / 55.29639°N 133.24333°W / 55.29639; -133.24333MapKWFLocation of airport in AlaskaRunways Direction Length Surface ft m NW/SE 1,000 3,048 Water Statistics (2006)Aircraft operations1,600Enplanements (2008)2,072Source: Federal Aviation Administration&#...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Società Sportiva Juve Stabia. Stabia Sporting ClubStagione 1923-1924Sport calcio Squadra Stabia Prima Divisione5ª nella Sezione Campana della Lega Sud. 1922-1923 1924-1925 Si invita a seguire il modello di voce Questa pagina raccoglie i dati riguardanti lo Stab...

 

Untuk kegunaan lain, lihat Titik kritis. Foto fase cair dari etana pada kondisi subkritis (Gambar 1). Pada kondisi kritis (Gambar 2), yang dicapai pada suhu 32.17 °C dan tekanan 48.72 bar, etana terlihat keruh (fase gas dan cair bersamaan). Gambar 3 menunjukkan etana pada kondisi superkritis.[1] Dalam termodinamika, titik kritis adalah titik akhir kurva kesetimbangan fasa. Contoh yang paling umum adalah titik kritis uap-cair, titik akhir kurva suhu-tekanan yang menunjukkan ...

 

Untuk orang lain dengan nama yang sama, lihat James Davis. Jimmie DavisDavis pada 1962 Gubernur Louisiana 47Masa jabatan9 Mei 1944 – 11 Mei 1948WakilJ. Emile VerretPendahuluSam H. JonesPenggantiEarl K. LongMasa jabatan10 Mei 1960 – 12 Mei 1964WakilClarence C. Taddy AycockPendahuluEarl K. LongPenggantiJohn McKeithen Informasi pribadiLahirJames Houston Davis(1899-09-11)11 September 1899Beech Springs, Jackson Parish, Louisiana, ASMeninggal5 November 2000(2000-11-05) (um...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article has an unclear citation style. The references used may be made clearer with a different or consistent style of citation and footnoting. (August 2012) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unso...

 

Period of banking in U.S. history Notes of the Bank of Singapore, Michigan Wildcat banking was the issuance of paper currency in the United States by poorly capitalized state-chartered banks. These wildcat banks existed alongside more stable state banks during the Free Banking Era from 1836 to 1865, when the country had no national banking system. States granted banking charters readily and applied regulations ineffectively, if at all.[1] Bank closures and outright scams regularly occ...

 

Cet article est une ébauche concernant une personnalité cambodgienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Udayādityavarman IIFonctionRoi du Cambodge1050-1066Suryavarman IerHarshavarman IIIBiographieNaissance 1049Décès 1066Nom dans la langue maternelle ឧទយាទិត្យវម៌្មទី២Activité SouverainFamille Kaundinya (d)Enfants NripatindravarmanVijayendralaksh...

Gomen ne, SummerGambar sampul Edisi Reguler Tipe ASingel oleh SKE48Sisi-BShoujo wa Manatsu ni Nani o suru? (edisi reguler A)Hazu Misaki (edisi reguler B)Pinocchio GunDirilis7 Juli 2010GenreJ-popLabelCrown GoldProduserYasushi AkimotoVideo musikGomen ne, Summer di YouTube Video musikShoujo wa Manatsu ni Nani o suru di YouTube Video musikHazu Misaki di YouTube Video musikPinocchio Gun di YouTube Gomen ne, Summer (ごめんね、SUMMERcode: ja is deprecated , Maafkan, Summer) adalah singel ke-3 ...

 

League of city states in ancient Greece Silver drachma of the Euboean League. Obverse: Head of the nymph Euboea. Reverse: Bull's head and kantharos, with the inscription EY[ΒΟΙΕΩΝ] of the Euboeans. The Euboean League (Ancient Greek: τὸ κοινὸν τῶν Εὐβοιέων, to koinon tōn Euboieōn[1]) was a federal league (koinon) of the cities of Euboea in ancient Greece, extant from the 3rd century BC to the 2nd or 3rd century AD. The League is first attested during the ...

 

13th and 14th-century Bishop of Durham This article is about the bishop of Durham. For his kinsman and namesake, see Antony Bek (bishop of Norwich). Antony BekPatriarch of JerusalemBishop of DurhamArms of Antony Bek, Bishop of Durham: Gules, a cross moline (also recerclée) ermine, as blazoned in the Gelre Roll of Arms and the Falkirk Roll of c.1298, listing the knights who fought with King Edward I at the Battle of Falkirk. They appear on his seal and on Episcopal Durham Penny coins minted b...

Cheese made from the milk of goats This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Goat cheese – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this message) Various Goat cheeses Goat cheese on bread Goat cheese, goat's cheese or chèvre (/ˈʃɛvrə/ or /ˈʃɛv/; fro...

 

Malaysian actor based in Singapore (born 1969) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Chen Hanwei – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remov...

 

Concept in politics This article is part of a series aboutScott Morrison Early life and career Member for Cook (2007–2024) Abbott government Abbott Ministry Turnbull government First Turnbull Ministry Second Turnbull Ministry 2018 Liberal Party leadership spills Prime Minister of Australia(International trips) First Ministry Second Ministry 2019–20 Australian fires Sports rorts affair COVID-19 pandemic in Australia Brereton Report Parliament House sexual misconduct allegations AUKUS 2022 ...

Benoît BadiashileNazionalità Francia Altezza194 cm Peso75 kg Calcio RuoloDifensore Squadra Chelsea CarrieraGiovanili 2007-2008 Limoges2008-2016 Malesherbes2016-2018 Monaco Squadre di club1 2018-2023 Monaco106 (6)2023- Chelsea29 (1) Nazionale 2016 Francia U-165 (0)2017-2018 Francia U-176 (0)2018 Francia U-182 (0)2018-2019 Francia U-1918 (0)2020-2022 Francia U-2116 (0)2022- Francia2 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole parti...

 

2017 Scottish local government election Main article: 2017 Scottish local elections 2017 East Lothian Council election ← 2012 4 May 2017 (2017-05-04) 2022 → All 22 seats to East Lothian Council12 seats needed for a majority   First party Second party Third party   Lab Con SNP Leader Willie Innes Jane Henderson Stuart Currie Party Labour Conservative SNP Leader's seat Preston, Seton and Gosford North Berwick Coastal Musselburgh Last elec...