SPQR tree

A graph and its SPQR tree. The dashed black lines connect pairs of virtual edges, shown as black; the remaining edges are colored according to the triconnected component they belong to.

In graph theory, a branch of mathematics, the triconnected components of a biconnected graph are a system of smaller graphs that describe all of the 2-vertex cuts in the graph. An SPQR tree is a tree data structure used in computer science, and more specifically graph algorithms, to represent the triconnected components of a graph. The SPQR tree of a graph may be constructed in linear time[1] and has several applications in dynamic graph algorithms and graph drawing.

The basic structures underlying the SPQR tree, the triconnected components of a graph, and the connection between this decomposition and the planar embeddings of a planar graph, were first investigated by Saunders Mac Lane (1937); these structures were used in efficient algorithms by several other researchers[2] prior to their formalization as the SPQR tree by Di Battista and Tamassia (1989, 1990, 1996).

Structure

An SPQR tree takes the form of an unrooted tree in which for each node x there is associated an undirected graph or multigraph Gx. The node, and the graph associated with it, may have one of four types, given the initials SPQR:

  • In an S node, the associated graph is a cycle graph with three or more vertices and edges. This case is analogous to series composition in series–parallel graphs; the S stands for "series".[3]
  • In a P node, the associated graph is a dipole graph, a multigraph with two vertices and three or more edges, the planar dual to a cycle graph. This case is analogous to parallel composition in series–parallel graphs; the P stands for "parallel".[3]
  • In a Q node, the associated graph has a single real edge. This trivial case is necessary to handle the graph that has only one edge. In some works on SPQR trees, this type of node does not appear in the SPQR trees of graphs with more than one edge; in other works, all non-virtual edges are required to be represented by Q nodes with one real and one virtual edge, and the edges in the other node types must all be virtual.
  • In an R node, the associated graph is a 3-connected graph that is not a cycle or dipole. The R stands for "rigid": in the application of SPQR trees in planar graph embedding, the associated graph of an R node has a unique planar embedding.[3]

Each edge xy between two nodes of the SPQR tree is associated with two directed virtual edges, one of which is an edge in Gx and the other of which is an edge in Gy. Each edge in a graph Gx may be a virtual edge for at most one SPQR tree edge.

An SPQR tree T represents a 2-connected graph GT, formed as follows. Whenever SPQR tree edge xy associates the virtual edge ab of Gx with the virtual edge cd of Gy, form a single larger graph by merging a and c into a single supervertex, merging b and d into another single supervertex, and deleting the two virtual edges. That is, the larger graph is the 2-clique-sum of Gx and Gy. Performing this gluing step on each edge of the SPQR tree produces the graph GT; the order of performing the gluing steps does not affect the result. Each vertex in one of the graphs Gx may be associated in this way with a unique vertex in GT, the supervertex into which it was merged.

Typically, it is not allowed within an SPQR tree for two S nodes to be adjacent, nor for two P nodes to be adjacent, because if such an adjacency occurred the two nodes could be merged into a single larger node. With this assumption, the SPQR tree is uniquely determined from its graph. When a graph G is represented by an SPQR tree with no adjacent P nodes and no adjacent S nodes, then the graphs Gx associated with the nodes of the SPQR tree are known as the triconnected components of G.

Construction

The SPQR tree of a given 2-vertex-connected graph can be constructed in linear time.[1]

The problem of constructing the triconnected components of a graph was first solved in linear time by Hopcroft & Tarjan (1973). Based on this algorithm, Di Battista & Tamassia (1996) suggested that the full SPQR tree structure, and not just the list of components, should be constructible in linear time. After an implementation of a slower algorithm for SPQR trees was provided as part of the GDToolkit library, Gutwenger & Mutzel (2001) provided the first linear-time implementation. As part of this process of implementing this algorithm, they also corrected some errors in the earlier work of Hopcroft & Tarjan (1973).

The algorithm of Gutwenger & Mutzel (2001) includes the following overall steps.

  1. Sort the edges of the graph by the pairs of numerical indices of their endpoints, using a variant of radix sort that makes two passes of bucket sort, one for each endpoint. After this sorting step, parallel edges between the same two vertices will be adjacent to each other in the sorted list and can be split off into a P-node of the eventual SPQR tree, leaving the remaining graph simple.
  2. Partition the graph into split components; these are graphs that can be formed by finding a pair of separating vertices, splitting the graph at these two vertices into two smaller graphs (with a linked pair of virtual edges having the separating vertices as endpoints), and repeating this splitting process until no more separating pairs exist. The partition found in this way is not uniquely defined, because the parts of the graph that should become S-nodes of the SPQR tree will be subdivided into multiple triangles.
  3. Label each split component with a P (a two-vertex split component with multiple edges), an S (a split component in the form of a triangle), or an R (any other split component). While there exist two split components that share a linked pair of virtual edges, and both components have type S or both have type P, merge them into a single larger component of the same type.

To find the split components, Gutwenger & Mutzel (2001) use depth-first search to find a structure that they call a palm tree; this is a depth-first search tree with its edges oriented away from the root of the tree, for the edges belonging to the tree, and towards the root for all other edges. They then find a special preorder numbering of the nodes in the tree, and use certain patterns in this numbering to identify pairs of vertices that can separate the graph into smaller components. When a component is found in this way, a stack data structure is used to identify the edges that should be part of the new component.

Usage

Finding 2-vertex cuts

With the SPQR tree of a graph G (without Q nodes) it is straightforward to find every pair of vertices u and v in G such that removing u and v from G leaves a disconnected graph, and the connected components of the remaining graphs:

  • The two vertices u and v may be the two endpoints of a virtual edge in the graph associated with an R node, in which case the two components are represented by the two subtrees of the SPQR tree formed by removing the corresponding SPQR tree edge.
  • The two vertices u and v may be the two vertices in the graph associated with a P node that has two or more virtual edges. In this case the components formed by the removal of u and v are represented by subtrees of the SPQR tree, one for each virtual edge in the node.
  • The two vertices u and v may be two vertices in the graph associated with an S node such that either u and v are not adjacent, or the edge uv is virtual. If the edge is virtual, then the pair (u,v) also belongs to a node of type P and R and the components are as described above. If the two vertices are not adjacent then the two components are represented by two paths of the cycle graph associated with the S node and with the SPQR tree nodes attached to those two paths.

Representing all embeddings of planar graphs

If a planar graph is 3-connected, it has a unique planar embedding up to the choice of which face is the outer face and of orientation of the embedding: the faces of the embedding are exactly the nonseparating cycles of the graph. However, for a planar graph (with labeled vertices and edges) that is 2-connected but not 3-connected, there may be greater freedom in finding a planar embedding. Specifically, whenever two nodes in the SPQR tree of the graph are connected by a pair of virtual edges, it is possible to flip the orientation of one of the nodes (replacing it by its mirror image) relative to the other one. Additionally, in a P node of the SPQR tree, the different parts of the graph connected to virtual edges of the P node may be arbitrarily permuted. All planar representations may be described in this way.[4]

See also

  • Block-cut tree, a similar tree structure for the 2-vertex-connected components
  • Gomory–Hu tree, a different tree structure that characterizes the edge connectivity of a graph
  • Tree decomposition, a generalization (no longer unique) to larger cuts

Notes

  1. ^ a b Hopcroft & Tarjan (1973); Gutwenger & Mutzel (2001).
  2. ^ E.g., Hopcroft & Tarjan (1973) and Bienstock & Monma (1988), both of which are cited as precedents by Di Battista and Tamassia.
  3. ^ a b c Di Battista & Tamassia (1989).
  4. ^ Mac Lane (1937).

References

  • Bienstock, Daniel; Monma, Clyde L. (1988), "On the complexity of covering vertices by faces in a planar graph", SIAM Journal on Computing, 17 (1): 53–76, CiteSeerX 10.1.1.542.2314, doi:10.1137/0217004.
  • Di Battista, Giuseppe; Tamassia, Roberto (1989), "Incremental planarity testing", Proc. 30th Annual Symposium on Foundations of Computer Science, pp. 436–441, doi:10.1109/SFCS.1989.63515, ISBN 0-8186-1982-1.
  • Di Battista, Giuseppe; Tamassia, Roberto (1990), "On-line graph algorithms with SPQR-trees", Proc. 17th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 443, Springer-Verlag, pp. 598–611, doi:10.1007/BFb0032061, ISBN 978-3-540-52826-5.
  • Di Battista, Giuseppe; Tamassia, Roberto (1996), "On-line planarity testing" (PDF), SIAM Journal on Computing, 25 (5): 956–997, doi:10.1137/S0097539794280736.
  • Gutwenger, Carsten; Mutzel, Petra (2001), "A linear time implementation of SPQR-trees", Proc. 8th International Symposium on Graph Drawing (GD 2000), Lecture Notes in Computer Science, vol. 1984, Springer-Verlag, pp. 77–90, doi:10.1007/3-540-44541-2_8, ISBN 978-3-540-41554-1.
  • Hopcroft, John; Tarjan, Robert (1973), "Dividing a graph into triconnected components", SIAM Journal on Computing, 2 (3): 135–158, doi:10.1137/0202012, hdl:1813/6037.
  • Mac Lane, Saunders (1937), "A structural characterization of planar combinatorial graphs", Duke Mathematical Journal, 3 (3): 460–472, doi:10.1215/S0012-7094-37-00336-3.

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 65° خط طول 65 غرب خريطة لجميع الإحداثيات من جوجل خريطة لجميع الإحداثيات من بينغ تصدير جميع الإحداثيات من كي...

Military equipment list This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of equipment of the Polish Land Forces – news · newspapers · books · scholar ·...

St. Nikolai mit rekonstruiertem Tympanonrelief, 2018 Die evangelische Kirche St. Nikolai, Eigenschreibweise St. Nikolaikirche[1] oder einfach Nikolaikirche, ist ein unter Denkmalschutz stehender Sakralbau am Alten Markt in Potsdam. Der nach dem heiligen Nikolaus benannte Zentralbau im klassizistischen Stil entstand nach Plänen von Karl Friedrich Schinkel in den Jahren 1830 bis 1837. Die weit über die Dächer der Stadt emporragende Tambourkuppel des 77 Meter hohen Gebäudes wurd...

Переписна місцевість Хуаресангл. Juarez Координати 26°12′ пн. ш. 97°43′ зх. д. / 26.200° пн. ш. 97.717° зх. д. / 26.200; -97.717Координати: 26°12′ пн. ш. 97°43′ зх. д. / 26.200° пн. ш. 97.717° зх. д. / 26.200; -97.717 Країна СШАСШАШтат ТехасОкруг Кам�...

Untuk kegunaan lain, lihat MSI. Micro-Star International Co., LtdKantor pusat dan pabrik MSI di Kota Taipei Baru, TaiwanJenisPublikKode emitenTWSE: 2377IndustriElektronikDidirikan4 Agustus 1986; 37 tahun lalu (1986-08-04)KantorpusatDistrik Zhonghei, Kota Taipei Baru, TaiwanProdukNotebook, Motherboard, Video CardPendapatan NT$201.8 miliar (2021)[1]Laba operasi NT$19.9 miliar (2021)[1]Laba bersih NT$16.9 miliar (2021)[1]Karyawan2.672 (2020)Situs webwww.msi.com Micro...

У Вікіпедії є статті про інші значення цього терміна: 14-та армія. 14-та повітряна армія СРСРНа службі 15 серпня 1942 — 1 травня 1945Країна СРСРНалежність Волховський фронт Ленінградський фронт Резерв Ставки ВГК 3-й Прибалтійський фронт 2-й Прибалтійський фронтВид ВПСТип Черво

De zonsverduistering was te zien tussen de blauwe lijnen. De totale zonsverduistering van 12 november 1985 trok veel over zee en was op land alleen te zien op Antarctica.[1][2] Lengte Maximum Het punt met maximale totaliteit ligt op zee voor de kust van Antarctica ver van enig land op coördinatenpunt 68.5589° Zuid / 142.5741° West en duurt 1m58,7s. Limieten Fenomeen Code Tijdstip UTC Eerste contact bijschaduw P1 12:08:45.5 UT Eerste contact kernschaduw U1 13:46:24.0 UT Kern...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 6 de octubre de 2011. Dinero. En macroeconomía, se denomina consumo privado al gasto realizado por las unidades familiares, las empresas privadas y las instituciones privadas sin ánimo de lucro residentes en un país. En el cálculo se excluyen las compras de tierra y edificios para viviendas, que se contemplan como una forma de inversión (en bienes inmuebles). El registro d...

Шлях додомуThe Way Back Жанр драма історичнийРежисер Пітер ВірПродюсер Пітер Вір Джоні Левін Гай Іст Джейк Ебертс Джон Птак Джонатан Шварц Маріус А. Маркевічус Найджел Сінклер Дункан Гендерсон Скотт РудінСценарист Кейт Р. Кларк Славомир Равич Пітер ВірНа основі The Long WalkdУ гол...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 神奈川県立多摩高等学校 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2021年4月) 神奈川県立多摩高等学校 北緯35�...

It has been suggested that Tees Valley be merged into this article. (Discuss) Proposed since August 2023. Conurbation in England For a former North Riding of Yorkshire local district, see County Borough of Teesside. For the mayoral area, see Tees Valley. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Teesside – news · newspa...

Motor racing circuit in Bulawayo, Zimbabwe This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Breedon Everard Raceway – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this template message) Breedon Everard RacewayShort Circuit (1975–present) Original Circuit (1969–...

Highest court of Croatia in matters of constitutional law Constitutional Court of the Republic of CroatiaUstavni sud Republike HrvatskeEstablished15 February 1964 (in SR Croatia)[1]25 July 1990 (in Croatia)[1]LocationSt. Mark's Square, ZagrebComposition methodElected by the Croatian Parliament with qualified majorityAuthorized byConstitution of the Republic of CroatiaJudge term lengthEight years (renewable once)Number of positions13Websiteusud.hrPresident of the Constitutional...

Tribunal pénal international pour le Rwanda Les bureaux du TPIR à Arusha en 2003. Sigle (en) ICTR, (fr) TPIR Juridiction Génocide des Tutsis au Rwanda Type Tribunal pénal international spécialisé Langue Anglais, français Création 8 novembre 1994 Dissolution 31 décembre 2015 Siège Arusha Coordonnées 3° 22′ 04″ sud, 36° 41′ 47″ est Géolocalisation sur la carte : Tanzanie Voir aussi Site officiel https://unictr.irmct.org/fr/tribunal modifi...

STS-90 Эмблема Общие сведения Организация НАСА Полётные данные корабля Название корабля Колумбия Полёт шаттла № 90 Стартовая площадка КЦ Кеннеди LC-39B Запуск 17 апреля 1998 18:19 UTC Посадка корабля 3 мая 1998 года 12:09:00 (ПП №33) Длительность полёта 15 дней 21 час 50 минут 58 секунд Пройденно...

Poetic form containing five lines A quintain or pentastich is any poetic form containing five lines. Examples include the tanka, the cinquain, the quintilla, Shakespeare's Sonnet 99, and the limerick. Examples Shakespeare's Sonnet 99 in the 1609 quarto Original manuscript of Autumn Song by Dante Gabriel Rossetti, 1848, in the Ashley Library. Sonnet 99 (first stanza) The forward violet thus did I chide: Sweet thief, whence didst thou steal thy sweet that smells If not from my love’s breath? ...

Canadian boxer This article may have too many section headers. Please help consolidate the article. (September 2022) (Learn how and when to remove this template message) This article may contain an excessive amount of intricate detail that may interest only a particular audience. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia's inclusion policy. (September 2022) (Learn how and when to remove this template message...

John Nelson Darby John Nelson Darby (18 November 1800 – 29 April 1882) merupakan pelopor separatisme gerejawi dan dispensasionalisme pra-milenialisme.[1] Ia lulus dari Trinity College pada tahun 1819.[1] Setelah dalam waktu yang singkat menjadi pengacara, ia memasuki pelayanan di Church of England pada tahun 1825, sebagai seorang diaken dan secara cepat menjadi pendeta wilayah di kota Wicklow, Irlandia.[1] Pada tahun 1827, Darby menemukan sebuah oase sp...

Compilation album series Walt Disney Records: The Legacy Collection is a compilation album series produced and released by Walt Disney Records. Background The majority of the series commemorates distinct anniversaries of Disney films and the 60th anniversary of Disneyland, containing newly remastered versions of the original and expanded soundtrack albums. Each individual title features original artwork and illustrations by Walt Disney Animation Studios visual development artist, Lorelay Bov�...

Japanese manga series Our Home's Fox DeityCover of the first light novel volume, featuring Kūgen Tenko我が家のお稲荷さま。(Wagaya no Oinari-sama)GenreFantasy comedy[1] Light novelWritten byJin ShibamuraIllustrated byEizō HōdenPublished byASCII Media WorksImprintDengeki BunkoDemographicMaleOriginal runFebruary 10, 2004 – October 1, 2007Volumes7 MangaWritten byJin ShibamuraIllustrated bySuiren MatsukazePublished byASCII Media WorksMagazin...