Share to: share facebook share twitter share wa share telegram print page

Rigid transformation

In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points.[1][self-published source][2][3]

The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation.

In dimension two, a rigid motion is either a translation or a rotation. In dimension three, every rigid motion can be decomposed as the composition of a rotation and a translation, and is thus sometimes called a rototranslation. In dimension three, all rigid motions are also screw motions (this is Chasles' theorem)

In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections.

Any object will keep the same shape and size after a proper rigid transformation.

All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the special Euclidean group, and denoted SE(n).

In kinematics, rigid motions in a 3-dimensional Euclidean space are used to represent displacements of rigid bodies. According to Chasles' theorem, every rigid transformation can be expressed as a screw motion.

Formal definition

A rigid transformation is formally defined as a transformation that, when acting on any vector v, produces a transformed vector T(v) of the form

T(v) = R v + t

where RT = R−1 (i.e., R is an orthogonal transformation), and t is a vector giving the translation of the origin.

A proper rigid transformation has, in addition,

det(R) = 1

which means that R does not produce a reflection, and hence it represents a rotation (an orientation-preserving orthogonal transformation). Indeed, when an orthogonal transformation matrix produces a reflection, its determinant is −1.

Distance formula

A measure of distance between points, or metric, is needed in order to confirm that a transformation is rigid. The Euclidean distance formula for Rn is the generalization of the Pythagorean theorem. The formula gives the distance squared between two points X and Y as the sum of the squares of the distances along the coordinate axes, that is where X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn), and the dot denotes the scalar product.

Using this distance formula, a rigid transformation g : RnRn has the property,

Translations and linear transformations

A translation of a vector space adds a vector d to every vector in the space, which means it is the transformation

g(v) = v + d.

It is easy to show that this is a rigid transformation by showing that the distance between translated vectors equal the distance between the original vectors:

A linear transformation of a vector space, L : RnRn, preserves linear combinations, A linear transformation L can be represented by a matrix, which means

L : v → [L]v,

where [L] is an n×n matrix.

A linear transformation is a rigid transformation if it satisfies the condition, that is Now use the fact that the scalar product of two vectors v.w can be written as the matrix operation vTw, where the T denotes the matrix transpose, we have Thus, the linear transformation L is rigid if its matrix satisfies the condition where [I] is the identity matrix. Matrices that satisfy this condition are called orthogonal matrices. This condition actually requires the columns of these matrices to be orthogonal unit vectors.

Matrices that satisfy this condition form a mathematical group under the operation of matrix multiplication called the orthogonal group of n×n matrices and denoted O(n).

Compute the determinant of the condition for an orthogonal matrix to obtain which shows that the matrix [L] can have a determinant of either +1 or −1. Orthogonal matrices with determinant −1 are reflections, and those with determinant +1 are rotations. Notice that the set of orthogonal matrices can be viewed as consisting of two manifolds in Rn×n separated by the set of singular matrices.

The set of rotation matrices is called the special orthogonal group, and denoted SO(n). It is an example of a Lie group because it has the structure of a manifold.

See also

References

  1. ^ O. Bottema & B. Roth (1990). Theoretical Kinematics. Dover Publications. reface. ISBN 0-486-66346-9.
  2. ^ J. M. McCarthy (2013). Introduction to Theoretical Kinematics. MDA Press. reface.
  3. ^ Galarza, Ana Irene Ramírez; Seade, José (2007), Introduction to classical geometries, Birkhauser

This information is adapted from Wikipedia which is publicly available.

Read other articles:

  لمعانٍ أخرى، طالع قائمة مجلدات المحقق كونان (توضيح). الفصل الـ 1000 من سلسلة فصول المحقق كونان. إصدارات مانغا المحقق كونان عادة ما تكون من كتابة وتأليف غوشو أوياما، أول إصدار من هذه المانغا كان في 18 يونيو 1994 ،[1][2][3][4] واستمر الإصدار حيث وصل عدد الفصول إلى أ…

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan hanya untuk penjelasan ilmiah, bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Perhatian: Informasi dalam artikel ini bukanlah resep atau nasihat medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. Penyakit kardiovaskularMikrograf jantung dengan fibrosis (kuning…

Davi SumbingLahirMuhammad Kadavi16 Juni 2000 (umur 23)Pangkalan Bun, Kalimantan Tengah, IndonesiaNama lainDavi KadaviDavi SumbingAlmamaterAkademi Teknologi Bank Darah SurakartaPekerjaanPelawak tunggalTahun aktif2017-sekarang Muhammad Kadavi, yang dikenal dengan nama Davi Kadavi atau Davi Sumbing (lahir 16 Juni 2000) adalah seorang pelawak tunggal berkebangsaan Indonesia. Davi dikenal setelah mengikuti kompetisi Stand Up Comedy Indonesia Kompas TV musim ke-9 atau SUCI IX yang diada…

 Nota: Se procurauação outros ciclones tropicais de mesmo nome, veja Tempestade tropical Goni. Tempestade tropical Goni Tempestade tropical (Escala JMA) Tempestade tropical (SSHWS) A tempestade tropical Goni em 4 de agosto, pouco antes de atingir a costa do sul da China. Formação 30 de julho Dissipação 9 de agosto Ventos mais fortes sustentado 10 min.: 75 km/h (45 mph) sustentado 1 min.: 85 km/h (50 mph) Pressão mais baixa 990 hPa (mbar); 29.23 inHg Fatalidades 19 diretas (1…

Pour les articles homonymes, voir Comté de Robertson. Cet article est une ébauche concernant le Kentucky. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Comté de RobertsonRobertson County Palais de justice du comté de Robertson à Mount Olivet Administration Pays États-Unis État Kentucky Chef-lieu Mount Olivet Fondation 1867 Démographie Population 2 282 hab. (2010) Densité 8,8 hab./km2 Géogr…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2018) كلوديا ألفاريز   معلومات شخصية الميلاد 6 أكتوبر 1981 (42 سنة)  مدينة مكسيكو  مواطنة المكسيك  الحياة العملية المهنة ممثلة،  وممثلة تلفزيونية،  وعار

Сторінка програмного часопису Краківського Авангарду «Zwrotnica», 1923 р. Краківський Авангард (пол. Awangarda Krakowska) — літературне угрупування періоду міжвоєнного двадцятиліття, створене у Кракові на засадах, що тяжіли до футуризму та авангардизму. Ідейним керівником та авто

Gudum Parochie van Denemarken Situering Bisdom Bisdom Viborg Gemeente Lemvig Coördinaten 56°31'19NB, 8°27'5OL Algemeen Inwoners (2004) 934 Leden Volkskerk (2004) 865 Overig Kerken Gudum Kirke Proosdij Lemvig Provsti Pastoraat Gudum-Fabjerg Foto's Portaal    Denemarken Gudum is een parochie van de Deense Volkskerk in de Deense gemeente Lemvig. De parochie maakt deel uit van het bisdom Viborg en telt 865 kerkleden op een bevolking van 934 (2004). De parochie was tot 1970 deel van Skod…

У Вікіпедії є статті про інших людей із прізвищем Келлі. Алан Келлі Особисті дані Народження 11 серпня 1968(1968-08-11) (55 років)   Престон, Велика Британія Зріст 188 см Громадянство  Ірландія Позиція воротар Інформація про клуб Поточний клуб завершив кар'єру Юнацькі клуби «П

Halaman ini berisi artikel tentang stasiun Shanghai Metro. Untuk stasiun Wuhan Metro, lihat Stasiun Taman Zhongshan (Wuhan Metro). Taman Zhongshan中山公园Peron Jalur 2Lokasidekat Taman Zhongshan, Distrik Changning, ShanghaiTiongkokKoordinat31°13′05″N 121°24′57″E / 31.218014°N 121.415741°E / 31.218014; 121.415741Koordinat: 31°13′05″N 121°24′57″E / 31.218014°N 121.415741°E / 31.218014; 121.415741PengelolaShanghai No. 2/3 M…

Cricket tournament 2002–03 Ranji TrophyThe Ranji Trophy, which the winners get.Administrator(s)BCCICricket formatFirst-class cricketTournament format(s)League and knockoutChampionsMumbai (35th title)Participants27Most runsGautam Gambhir (Delhi) (833)[1]Most wicketsLakshmipathy Balaji (Tamil Nadu) and Sunil Joshi (Karnataka) (47)[2]← 2001–022003–04 → The 2002–03 Ranji Trophy was the 69th season of the Ranji Trophy. Mumbai defeated Tamil Nadu by 141 runs in the …

Universität Passau Gründung 1. Januar 1973 Ort Passau Bundesland Bayern Bayern Land Deutschland Deutschland Präsident Ulrich Bartosch Studierende 11.823 (Stand 30. März 2021)[1] Mitarbeiter 1.205 (Stand 1. Februar 2021)[1] davon Professoren 129 (Stand 30. März 2021)[1] Jahresetat 89,3 Mio. € (2020)[2]Drittmittel: 16,7 Mio. €[3] Netzwerke DFH[4] Website www.uni-passau.de Die Universität Passau (UP) ist die einzige Universität im…

As of December 2022[update], there were 45,270 electric vehicles in Israel.[1] As of May 2022[update], 5.2% of new cars sold in Israel were electric.[2] Government policy As of October 2022[update], the Israeli government charges a 10% tax on purchases of battery electric vehicles and a 40% tax on purchases of plug-in hybrid vehicles; these taxes are slated to increase to 20% and 55% respectively in 2023.[3] As of March 2022[…

Two superheroes created by DC Comics Comics character DamageJustice Society of America #6 (2007), art by Alex Ross.Publication informationPublisherDC ComicsFirst appearanceDamage #1 (April 1994)Created byTom Joyner, PhDBill MarimonIn-story informationAlter egoGrant Albert EmersonEthan Elvis Avery JuniorSpeciesMetahumanTeam affiliationsTeen TitansFreedom FightersJustice Society of AmericaBlack Lantern CorpsJustice League Task ForceJustice LeagueAbilitiesEnhanced strength, durability, speed, refle…

DodolAsalNegara asalIndonesia RincianJenismakanan manis Bahan utamaSari kelapa lbs Penjual jenang di Pasar Klewer, Solo. Dodol susu dari Pangalengan, Bandung Proses pengupasan durian untuk diolah menjadi dodol di pabrik dodol Ny.Lauw, Tangerang, Banten Dodol adalah penganan yang dibuat dari tepung ketan, santan kelapa, dan gula merah, kadang-kadang dicampur dengan buah-buahan, seperti durian, sirsak dibungkus daun (jagung), kertas, dan sebagainya.[1] Penganan ini berasal dari Ponorogo, J…

Indian film series Singam Franchiseofficial logoCreated byHariOriginal workSingamOwnerSun Pictures2D EntertainmentStudio GreenFilms and televisionFilm(s)Singam (2010)Singam II (2013)Si3 (2017) Singam (transl. Lion) is an Indian Tamil-language action film series centered around the title character Duraisingam, a tempered honest police officer who aims to eliminate corruption from the society.[1] The film series began in 2010 with the release of Singam, directed by Hari and starring …

Revolutionary poem by Kazi Nazrul Islam For other uses, see Bidrohi (disambiguation). Bidrohiby Kazi Nazrul IslamOriginal titleবিদ্রোহীWrittenDecember 1921First published in6 January 1922CountryBritish IndiaLanguage BengaliSubject(s)Rebellion, protestGenre(s)Rebel PoetryPublisherBijliLines139 Young Nazrul in-front of the Dalmadal Canon in Bishnupur, Bankura. Bidrohi (Bengali: বিদ্রোহী; English: The Rebel) is a popular revolutionary Bengali poem and the most famous…

Portuguese sport shooter João Costa Medal record Representing  Portugal Men's Shooting ISSF World Shooting Championships 2014 Granada 25m Standard pistol MLAIC World Shooting Championships 2022 Pforzheim 25m Pistol 2022 Pforzheim 25m Revolver European Games 2015 Baku 10m air pistol European Championships 2009 Osijek 50m pistol 2011 Belgrade 25m center fire pistol 2015 Maribor 50m pistol 2015 Arnhem 10m pistol mixed team 2022 Wrocław 50m pistol open 2013 Osijek 50m pistol 2003 Plzen 25m st…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Masjid Al-Salehجامع الشعبAgamaAfiliasi agamaIslamPrefekturSan'a'ProvinsiSanaaEcclesiastical or organizational statusSedang digunakanKepemimpinanHutsiDiberkatiNovember 2008StatusAktifLokasiLokasiYamanPrefekturSan'a'Koordinat15°19′32.88″N 44°…

Канал Дніпро — Кривий Ріг 47°46′54″ пн. ш. 33°33′21″ сх. д. / 47.78166700002777389° пн. ш. 33.55611100002777647° сх. д. / 47.78166700002777389; 33.55611100002777647Координати: 47°46′54″ пн. ш. 33°33′21″ сх. д. / 47.78166700002777389° пн. ш. 33.55611100002777647° сх. д. / 47.78166700002777389…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.147.195.177