Quota rule

In mathematics and political science, the quota rule describes a desired property of proportional apportionment methods. It says that the number of seats allocated to a party should be equal to their entitlement plus or minus one.[1][2][note 1] The ideal number of seats for a party, called their seat entitlement, is calculated by multiplying each party's share of the vote by the total number of seats. Equivalently, it is equal to the number of votes divided by the Hare quota. For example, if a party receives 10.56% of the vote, and there are 100 seats in a parliament, the quota rule says that when all seats are allotted, the party may get either 10 or 11 seats. The most common apportionment methods (the highest averages methods) violate the quota rule in situations where upholding it would cause a population paradox, although unbiased apportionment rules like Webster's method do so only rarely.

Mathematics

The entitlement for a party (the number of seats the party would ideally get) is:

The lower frame is then the entitlement rounded down to the nearest integer while the upper frame is the entitlement rounded up. The frame rule states that the only two allocations that a party can receive should be either the lower or upper frame.[1] If at any time an allocation gives a party a greater or lesser number of seats than the upper or lower frame, that allocation (and by extension, the method used to allocate it) is said to be in violation of the quota rule.

Example

If there are 5 available seats in the council of a club with 300 members, and party A has 106 members, then the entitlement for party A is . The lower frame for party A is 1, because 1.8 rounded down equal 1. The upper frame, 1.8 rounded up, is 2. Therefore, the quota rule states that the only two allocations allowed for party A are 1 or 2 seats on the council. If there is a second party, B, that has 137 members, then the quota rule states that party B gets , rounded up and down equals either 2 or 3 seats. Finally, a party C with the remaining 57 members of the club has a entitlement of , which means its allocated seats should be either 0 or 1. In all cases, the method for actually allocating the seats determines whether an allocation violates the quota rule, which in this case would mean giving party A any seats other than 1 or 2, giving party B any other than 2 or 3, or giving party C any other than 0 or 1 seat.

Relation to apportionment paradoxes

The Balinski–Young theorem proved in 1980 that if an apportionment method satisfies the quota rule, it must fail to satisfy some apportionment paradox.[3] For instance, although largest remainder method satisfies the quota rule, it violates the Alabama paradox and the population paradox. The theorem itself is broken up into several different proofs that cover a wide number of circumstances.[4]

Specifically, there are two main statements that apply to the quota rule:

  • Any method that follows the quota rule must fail the population paradox.[4]
  • Any method that is free of the population paradox must fail the quota rule for some circumstances.[4]

Use in apportionment methods

Different methods for allocating seats may or may not satisfy the quota rule. While many methods do violate the quota rule, it is sometimes preferable to violate the rule very rarely than to violate some other apportionment paradox; some sophisticated methods violate the rule so rarely that it has not ever happened in a real apportionment, while some methods that never violate the quota rule violate other paradoxes in much more serious fashions.

The largest remainder method does satisfy the quota rule. The method works by assigning each party its seat quota, rounded down. Then, the surplus seats are given to the party with the largest fractional part, until there are no more surplus seats. Because it is impossible to give more than one surplus seat to a party, every party will always be equal to its lower or upper frame.[5]

The D'Hondt method, also known as the Jefferson method[6] sometimes violates the quota rule by allocating more seats than the upper frame allowed.[7] Since Jefferson was the first method used for Congressional apportionment in the United States, this violation led to a substantial problem where larger states often received more representatives than smaller states, which was not corrected until Webster's method was implemented in 1842. Although Webster's method can in theory violate the quota rule, such occurrences are extremely rare.[8]

Notes

  1. ^ The entitlement for a party is sometimes called their seat quota, leading to the term "quota rule"; such seat quotas should not be confused with the unrelated concept of an electoral quota.

References

  1. ^ a b Michael J. Caulfield. "Apportioning Representatives in the United States Congress - The Quota Rule" Archived 2019-05-22 at the Wayback Machine. MAA Publications. Retrieved October 22, 2018
  2. ^ Alan Stein. Apportionment Methods Retrieved December 9, 2018
  3. ^ Beth-Allyn Osikiewicz, Ph.D. Impossibilities of Apportionment Archived 2020-09-29 at the Wayback Machine Retrieved October 23, 2018.
  4. ^ a b c M.L. Balinski and H.P. Young. (1980). "The Theory of Apportionment" Archived 2024-07-31 at the Wayback Machine. Retrieved October 23 2018
  5. ^ Hilary Freeman. "Apportionment" Archived 2018-09-20 at the Wayback Machine. Retrieved October 22 2018
  6. ^ "Apportionment 2" Retrieved October 22, 2018.
  7. ^ Jefferson’s Method Archived 2021-01-20 at the Wayback Machine Retrieved October 22, 2018.
  8. ^ Ghidewon Abay Asmerom. Apportionment. Lecture 4. Archived 2020-09-27 at the Wayback Machine Retrieved October 23, 2018.

Read other articles:

Jembatan Selat SundaKoordinat5°57′22″S 105°51′18″E / 5.956°S 105.855°E / -5.956; 105.855Moda transportasiMobilkereta apisepeda motorMelintasiSelat SundaNama resmiJembatan Selat SundaPengelola--KarakteristikDesainJembatan SuspensiPanjang total27 kmLebar--Bentang terpanjang--SejarahPerancangPemerintah IndonesiaDibangun oleh--DibukaDalam perencanaanStatistikTolYaLokasi Struktur Jembatan Selat SundaRencana Bentuk Jembatan Selat SundaJembatan Selat Sunda (JSS) a...

 

Star Trek: The Next Generation adalah sebuah serial televisi fiksi ilmiah Amerika yang tayang secara sindikasi dari September 1987 sampai Mei 1994. Serial tersebut merupakan serial peran hidup kedua dalam waralaba Star Trek dan berisi 176 (DVD dan penayangan asli) atau 178 (sindikasi) episode selama 7 musim. Serial tersebut mengambil latar 95 tahun setelah serial pertama. Episode televisi yang diurutkan disini merupakan sesuai dengan kronologi dari tanggal penayangan pertama, yang sesuai den...

 

Altar Kuil Beopju Kuil Beopju (Bahasa Korea: Beopjusa, makna: Kuil tempat bernaungnya ajaran Buddha[1]) adalah sebuah kuil Buddha yang terletak di kaki Gunung Songni, Provinsi Chungcheong Utara, Korea Selatan.[2][3][4] Kuil ini pertama kali didirikan pada zaman kerajaan Silla dan selanjutnya berkembang pesat pada zaman Dinasti Goryeo. Pada periode Joseon kuil ini sempat hancur karena peperangan, tetapi perlahan-lahan dibangun kembali dengan arsitektur baru. Mon...

Pemilihan umum Jepang 20092005201230 Agustus 2009← anggota terpilihanggota terpilih →Seluruh 480 kursi Dewan Perwakilan Jepang241 kursi untuk meraih status mayoritasKehadiran pemilih69.28%Kandidat   Partai pertama Partai kedua Partai ketiga   Ketua Yukio Hatoyama Tarō Asō Akihiro Ota Partai Demokratik Demokratik Liberal Partai Komeito Baru Kursi ketua Hokkaidō-9 Fukuoka-8 Tokyo-12(kalah) Pemilu sebelumnya 113 kursi36.44% (distrik)31.0% (blok) 296 ...

 

Bilateral relationsCypriot–Russian relations Cyprus Russia Diplomatic missionEmbassy of Cyprus, MoscowEmbassy of Russia, Nicosia Cypriot–Russian relations refers to bilateral foreign relations between the Republic of Cyprus and the Russian Federation. The Soviet Union established diplomatic relations with the newly independent Republic of Cyprus on 18 August 1960. Cooperation between both countries has increased since the 1990s because of the end of the Soviet Union. Cyprus has an embassy...

 

Conflict in United States history Morrisite WarPart of the Mormon WarsDateJune 1862LocationSouth Weber, Utah41°08′48″N 111°58′08″W / 41.1467°N 111.9688°W / 41.1467; -111.9688Result Utah Territory victoryBelligerents Morrisites Utah TerritoryCommanders and leaders Joseph Morris † Stephen S. Harding Robert T. BurtonUnits involved None United States Marshals Service[citation needed] Nauvoo LegionStrength 200 - 500 Morrisite followers 1,000 m...

R. KellyNama lahirRobert Sylvester Kelly[1]Lahir8 Januari 1967 (umur 57)Chicago, IllinoisGenreHip hop, R&B, Soul, Pop, GospelPekerjaanPenyanyi, AktorInstrumenRapping, Vocals, Piano, GuitarTahun aktif1989–sekarangLabelJive, Def Jam, Zomba, RocklandSitus web[1] Robert Sylvester Kelly (lahir 8 Januari 1967) atau lebih dikenal dengan R. Kelly merupakan seorang aktor dan penyanyi berkebangsaan Amerika Serikat yang menjadi terkenal saat masuk 40 besar, 25 besar di bidang musik. D...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: National Intelligence Agency Thailand – news · newspapers · books · scholar · JSTOR (July 2017) (Learn...

 

Human settlement in EnglandWhitnashSt Margaret's ChurchWhitnashLocation within WarwickshirePopulation10,489 (2021 census)DistrictWarwickShire countyWarwickshireRegionWest MidlandsCountryEnglandSovereign stateUnited KingdomPost townLEAMINGTON SPAPostcode districtCV31Dialling code01926PoliceWarwickshireFireWarwickshireAmbulanceWest Midlands UK ParliamentWarwick and Leamington List of places UK England Warwickshire 52°16′05″N 1°31′26″W / 5...

13th century Hindu philosopher who founded Dvaita Vedanta school This article is about the founder of a theistic philosophy. For the 1986 film, see Madhvacharya (film). Not to be confused with Madhavacharya. MadhvacharyaPersonalBornVāsudevac. 1199 (or 1238)[1]Pājaka, near Udupi[2]Karnataka[1]Diedc. 1278 (or 1317)ReligionHinduismOrderVedantaFounder ofUdupi Sri Krishna MathaPhilosophyTattvavada (Which later popularly came be known as Dvaita Vedanta)Religious caree...

 

Election in South Carolina Main article: 1892 United States presidential election 1892 United States presidential election in South Carolina ← 1888 November 8, 1892 1896 →   Nominee Grover Cleveland Benjamin Harrison Party Democratic Republican Home state New York Indiana Running mate Adlai Stevenson Whitelaw Reid Electoral vote 9 0 Popular vote 54,680 13,345 Percentage 77.56% 18.93% County Results Cleveland   50-60%   60-70% ...

 

Indian multinational automotive company Force Motors LimitedFormerlyBajaj Tempo MotorsCompany typePublicTraded as BSE: 500033 NSE: FORCEMOT ISININE451A01017Industry Automotive Commercial vehicles Founded1958; 66 years ago (1958)FounderN.K. FirodiaHeadquartersPune, Maharashtra, IndiaArea servedWorldwideKey peopleAbhay Firodia(Chairman)Prasan A. Firodia(Managing Director)ProductsTravellerGurkhaUrbaniaCitilineTraxOrchardBalwan TractorsRevenue ₹5,090 crore (US$640...

谢赫·穆吉布·拉赫曼Sheikh Mujibur Rahmanশেখ মুজিবুর রহমান第1任孟加拉總統任期1971年4月11日—1972年1月12日总理塔杰丁·艾哈迈德前任首任继任Nazrul Islam (Acting)任期1975年1月25日—1975年8月15日总理Muhammad Mansur Ali前任Mohammad Mohammadullah继任孔达卡尔·穆什塔克·艾哈迈德第2任孟加拉總理任期1972年1月12日—1972年1月24日总统阿布·赛义德·乔杜里Mohammad Mohammadullah前任Tajud...

 

Province in eastern China For other places with the same name, see Jiangxi (disambiguation). Province in ChinaJiangxi 江西ProvinceProvince of JiangxiName transcription(s) • Chinese江西省 (Jiāngxī Shěng) • AbbreviationJX / 赣 (pinyin: Gàn; Gan Chinese: Kōm) • GanKongsi • Hakka PinyimGong1 Si1 Sen3Mount LuMap showing the location of Jiangxi ProvinceCoordinates: 27°18′N 116°00′E / 27.3°N 116.0°E /...

 

Sedimentary basin located along the coast of southern California An aerial view of the Los Angeles Basin in the Peninsular Ranges in Southern California in June 2014 The Los Angeles Basin is a sedimentary basin located in Southern California, in a region known as the Peninsular Ranges. The basin is also connected to an anomalous group of east-west trending chains of mountains collectively known as the Transverse Ranges. The present basin is a coastal lowland area, whose floor is marked by elo...

Questa voce o sezione sull'argomento sport è ritenuta da controllare. Motivo: vedi discussione Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sull'argomento hockey in-line non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Hockey in-lineUn giocatore di hockey in-lineFederazioneF...

 

У этого термина существуют и другие значения, см. Астроном (значения). Астроном Сфера деятельности астрономия ISCO-08 occupation class 2111 Код занятости ISCO-88 2111 Противоположно псевдоастроном[вд]  Медиафайлы на Викискладе Галилео Галилей первым стал использовать телескоп для набл�...

 

Jersey orientale Jersey orientale - Localizzazione Dati amministrativiNome ufficialeEast Jersey CapitalePerth Amboy Dipendente da Regno d'Inghilterra PoliticaNascita1674 Fine1702 Territorio e popolazioneEvoluzione storicaPreceduto da Provincia del New Jersey Succeduto da Provincia del New Jersey Modifica dati su Wikidata · Manuale La provincia del Jersey orientale, insieme alla provincia del Jersey occidentale, furono due distinte divisioni politiche della Provincia del New Je...

Burg Neu-EmsVorarlberg, Austria south view of Burg Neu-EmsKoordinat47°22′06″N 09°42′20″E / 47.36833°N 9.70556°E / 47.36833; 9.70556JenisCastleInformasi situsPemilikWaldburg-ZeilTerbuka untukumumnoKondisiconservedSejarah situsDibangun1343Dibangun olehRitter Ulrich I. von Ems Kastil Neu-Ems (bahasa Jerman: Burg Neu-Ems atau Schloss Glopper) adalah sebuah kastil abad pertengahan di Hohenems di provinsi Vorarlberg, Austria. Kastil ini merupakan be...

 

У этого термина существуют и другие значения, см. Камбарка (значения). ГородКамбаркаудм. Камбарка Флаг Герб 56°16′ с. ш. 54°12′ в. д.HGЯO Страна  Россия Субъект Федерации Удмуртия Муниципальный округ Камбарский район История и география Основан в 1767 году Город с...