Seat bias

Seat bias is a property describing methods of apportionment. These are methods used to allocate seats in a parliament among federal states or among political parties. A method is biased if it systematically favors small parties over large parties, or vice versa. There are several mathematical measures of bias, which can disagree slightly, but all measures broadly agree that rules based on Droop's quota or Jefferson's method are strongly biased in favor of large parties, while rules based on Webster's method, Hill's method, or Hare's quota have low levels of bias,[1] with the differences being sufficiently small that different definitions of bias produce different results.[2]

Notation

There is a positive integer (=house size), representing the total number of seats to allocate. There is a positive integer representing the number of parties to which seats should be allocated. There is a vector of fractions with , representing entitlements, that is, the fraction of seats to which some party is entitled (out of a total of ). This is usually the fraction of votes the party has won in the elections.

The goal is to find an apportionment method is a vector of integers with , called an apportionment of , where is the number of seats allocated to party i.

An apportionment method is a multi-valued function , which takes as input a vector of entitlements and a house-size, and returns as output an apportionment of .

Majorization order

We say that an apportionment method favors small parties more than if, for every t and h, and for every and , implies either or .

If and are two divisor methods with divisor functions and , and whenever , then favors small agents more than .[1]: Thm.5.1 

This fact can be expressed using the majorization ordering on vectors. A vector a majorizes another vector b if for all k, the k largest parties receive in a at least as many seats as they receive in b. An apportionment method majorizes another method , if for any house-size and entitlement-vector, majorizes . If and are two divisor methods with divisor functions and , and whenever , then majorizes . Therefore, Adams' method is majorized by Dean's, which is majorized by Hill's, which is majorized by Webster's, which is majorized by Jefferson's.[3]

The shifted-quota methods (largest-remainders) with quota are also ordered by majorization, where methods with smaller s are majorized by methods with larger s.[3]

Averaging over all house sizes

To measure the bias of a certain apportionment method M, one can check, for each pair of entitlements , the set of all possible apportionments yielded by M, for all possible house sizes. Theoretically, the number of possible house sizes is infinite, but since are usually rational numbers, it is sufficient to check the house sizes up to the product of their denominators. For each house size, one can check whether or . If the number of house-sizes for which equals the number of house-sizes for which , then the method is unbiased. The only unbiased method, by this definition, is Webster's method.[1]: Prop.5.2 

Averaging over all entitlement-pairs

One can also check, for each pair of possible allocations , the set of all entitlement-pairs for which the method M yields the allocations (for ). Assuming the entitlements are distributed uniformly at random, one can compute the probability that M favors state 1 vs. the probability that it favors state 2. For example, the probability that a state receiving 2 seats is favored over a state receiving 4 seats is 75% for Adams, 63.5% for Dean, 57% for Hill, 50% for Webster, and 25% for Jefferson.[1]: Prop.5.2  The unique proportional divisor method for which this probability is always 50% is Webster.[1]: Thm.5.2  There are other divisor methods yielding a probability of 50%, but they do not satisfy the criterion of proportionality as defined in the "Basic requirements" section above. The same result holds if, instead of checking pairs of agents, we check pairs of groups of agents.[1]: Thm.5.3 

Averaging over all entitlement-vectors

One can also check, for each vector of entitlements (each point in the standard simplex), what is the seat bias of the agent with the k-th highest entitlement. Averaging this number over the entire standard simplex gives a seat bias formula.

Stationary divisor methods

For each stationary divisor method, i.e. one where seats correspond to a divisor , and electoral threshold :[4]: Sub.7.10 

In particular, Webster's method is the only unbiased one in this family. The formula is applicable when the house size is sufficiently large, particularly, when . When the threshold is negligible, the third term can be ignored. Then, the sum of mean biases is:

, when the approximation is valid for .

Since the mean bias favors large parties when , there is an incentive for small parties to form party alliances (=coalitions). Such alliances can tip the bias in their favor. The seat-bias formula can be extended to settings with such alliances.[4]: Sub.7.11 

For shifted-quota methods

For each shifted-quota method (largest-remainders method) with quota , when entitlement vectors are drawn uniformly at random from the standard simplex,

In particular, Hamilton's method is the only unbiased one in this family.[4]

Empirical data

Using United States census data, Balinski and Young argued Webster's method is the least median-biased estimator for comparing pairs of states, followed closely by the Huntington-Hill method.[1] However, researchers have found that under other definitions or metrics for bias, the Huntington-Hill method can also be described as least biased.[2]

References

  1. ^ a b c d e f g Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.
  2. ^ a b Ernst, Lawrence R. (1994). "Apportionment Methods for the House of Representatives and the Court Challenges". Management Science. 40 (10): 1207–1227. ISSN 0025-1909.
  3. ^ a b Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Preferring Stronger Parties to Weaker Parties: Majorization", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 149–157, doi:10.1007/978-3-319-64707-4_8, ISBN 978-3-319-64707-4, retrieved 2021-09-01
  4. ^ a b c Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Favoring Some at the Expense of Others: Seat Biases", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 127–147, doi:10.1007/978-3-319-64707-4_7, ISBN 978-3-319-64707-4, retrieved 2021-09-01

Read other articles:

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: SN Prana Putra Sohe – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) SN Prana Putra Sohe Wali Kota Lubuklingga...

 

 

Hamim Tohari Kapoksahli PangkostradPetahanaMulai menjabat 22 Maret 2024 PendahuluBudi KusworoPenggantiPetahanaPa Sahli Tk. II Kasad Bidang Lingkungan HidupMasa jabatan2 Oktober 2023 – 22 Maret 2024 PendahuluAbdurrahmanPenggantiAlbert SimanjuntakKepala Dinas Penerangan TNI Angkatan DaratMasa jabatan3 September 2022 – 2 Oktober 2023 PendahuluTatang SubarnaPenggantiKristomei Sianturi Informasi pribadiLahir22 Juli 1971 (umur 52)Trenggalek, Jawa Timur, IndonesiaAlma ...

 

 

Ancient city in the Troad, Anatolia Dardanos∆άρδανοςA stater of Dardanos showing the fighting bird on one side.Troas, showing the position of the city of Dardanus and the district of DardaniaCoordinates40°05′07″N 26°22′07″E / 40.0852°N 26.3685°E / 40.0852; 26.3685 For the central Illyrian region, see Dardanii. Dardanus or Dardanum (Greek: Δάρδανος, Dardanos, the feminine form; Greek: Δάρδανον, Dardanon, the neuter) was an ancient ci...

Poster Pesta Ohrwurm di Friedrichshafen. Ohrwurm (secara harfiah berarti cacing telinga), kadang dikenal dengan nama terngiang-ngiang, cacing otak,[1] musik lekat, earworm, atau sindrom lagu dan pembicaraan tersangkut,[2] adalah sebuah kejadian dimana musik atau pembicaraan yang terus terulang-ulang dalam pikiran seseorang meski lagu atau pembicaraan tersebut sudah tidak didengar.[3] Etimologi Frase-frase yang dipakai untuk menyebut ohrwurm meliputi pengulangan citraan...

 

 

العلاقات الأندورية البوروندية أندورا بوروندي   أندورا   بوروندي تعديل مصدري - تعديل   العلاقات الأندورية البوروندية هي العلاقات الثنائية التي تجمع بين أندورا وبوروندي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

 

 

У этого термина существуют и другие значения, см. Фландрия. графствоГрафство Фландриянидерл. Graafschap Vlaanderenфр. Comté de Flandre Флаг Фландрии Герб Графство Фландрия около 1350 года ←   → 862 — 1795 Столица Брюгге, позже Гент Религия католицизмпозднее — протестантизм Форм�...

15th-century Archbishop of Canterbury, Chancellor of England, and cardinal John MortonJ.C.D., D.C.L.Cardinal, Archbishop of CanterburyPrimate of All EnglandChurchCatholic ChurchAppointed6 October 1486Term ended15 September 1500PredecessorThomas BourchierSuccessorThomas Langton (as bishop-elect), Henry Deane as true ArchbishopOrdersConsecration31 January 1479by Thomas BourchierCreated cardinal20 September 1493by Alexander VIRankCardinal priest of Santa AnastasiaPersonal detailsBornc.̴...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

Mabel TaliaferroLahirMaybelle Evelyn Taliaferro(1887-05-21)21 Mei 1887Manhattan, New York City, A.S.Meninggal24 Januari 1979(1979-01-24) (umur 91)Honolulu, Hawaii, A.S.Nama lainNellPekerjaanAktrisTahun aktif1899–1956Suami/istriFrederic W. Thompson ​ ​(m. 1906; c. 1911)​ Thomas Carrigan ​ ​(m. 1913; c. 1919)​[1] Joseph O'Brien ​ ​(m. 1920; c...

القصيبة الإحداثيات 33°20′02″N 35°23′48″E / 33.333888888889°N 35.396666666667°E / 33.333888888889; 35.396666666667   تقسيم إداري  البلد لبنان  التقسيم الأعلى قضاء النبطية  خصائص جغرافية ارتفاع 400 متر  معلومات أخرى 71374  تعديل مصدري - تعديل     لمعانٍ أخرى، طالع القصيبة (توضيح). ...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Aprile (disambigua). Trionfo di Venere, governatrice del Toro, segno entrante il 21 di Aprile nell'omonimo affresco nel Salone dei Mesi di Palazzo Schifanoia a Ferrara. Aprile è il quarto mese dell'anno in base al calendario gregoriano, il secondo della primavera nell'emisfero boreale e dell'autunno nell'emisfero australe. Conta 30 giorni e si colloca nella prima metà di un anno civile. Indice 1 Storia 2 Cultura 3 Ricorrenze 4 No...

 

 

Questa voce o sezione sull'argomento storia è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. IapigiL'area di diffusione (intorno al 550 a.C....

Gavin O'Connor Gavin O'Connor (Long Island, 24 dicembre 1963) è un regista, sceneggiatore, produttore cinematografico, commediografo e attore statunitense. Indice 1 Biografia 2 Filmografia 2.1 Regista 2.1.1 Cinema 2.1.2 Televisione 2.2 Produttore 2.3 Attore 3 Doppiatori italiani 4 Note 5 Collegamenti esterni Biografia Nato a Long Island, nello Stato di New York, frequenta l'Università della Pennsylvania, dove inizia a scrivere le sue prime sceneggiature e si interessa a tutti gli aspetti de...

 

 

OH-58 Kiowa 一架美國陸軍的OH-58D奇奧瓦戰士偵察直升機 类型 觀測/偵察直升機原产国 美國制造商 貝爾直升機公司首飞 1966/1/10 (206A)[1]起役日期 1969/5状态 現役 (美國軍隊2016年4月退役)主要用户  美国陸軍 澳大利亞  中華民國  沙烏地阿拉伯生產年份 1966-1989[2]制造数量 2,200架以上发展自 貝爾206直升機 貝爾OH-58奇奧瓦偵察直升機 是一種直升機家族,單...

 

 

Ding Zilin, leader delle Madri di Tiananmen Le Madri di Tienanmen[1] sono un gruppo del Movimento democratico cinese che promuove un mutamento delle posizioni del governo verso la violenta repressione della Protesta di piazza Tienanmen del 4 giugno 1989. È guidata da Ding Zilin, candidata al Premio Nobel per la pace, una docente universitaria in pensione il cui giovane figlio fu ucciso dalle truppe governative durante la repressione.[2] Nel 2000 fu lanciata ufficialmente una ...

Premier League 2015 Généralités Sport football Organisateur(s) Fédération du Kazakhstan Édition 24e Lieu(x) Kazakhstan Date Du 7 mars au 8 novembre 2015 Participants 12 Site web officiel www.ffk.kz Palmarès Tenant du titre FK Astana Promu(s) en début de saison FC Okjetpes Kokchetaou Vainqueur FK Astana Meilleur(s) buteur(s) Bi Goua Gohou (22) Navigation Premier-Liga 2014 Premier-Liga 2016 modifier La saison 2015 de Premier-Liga kazakhe de football est la 24e édition de la premi...

 

 

Mathematical concept A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √x, whose domain consists of all nonnegative real numbers In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by dom ⁡ ( f ) {\displaystyle \operatorname {dom} (f)} or dom ⁡ f {\displaystyle \operatorname {dom} f} , where f is the function. In layman's terms, ...

 

 

Not to be confused with the Flag of Ivory Coast. Ireland'the tricolour' (an trídhathach)UseNational flag and ensign Proportion1:2Adopted1922[1] (constitutional status; 1937)DesignA vertical tricolour of green, white and orange. The national flag of Ireland (Irish: bratach na hÉireann), frequently referred to in Ireland as 'the tricolour' (an trídhathach) and elsewhere as the Irish tricolour, is a vertical tricolour of green (at the hoist), white and orange.[1][2] T...

Belangrijkste onderdelen van de anatomie van bloemen. Een meeldraad (wetenschappelijke benaming: stamen, meervoud stamina) is een onderdeel van de mannelijke geslachtsorganen van een bloem, dat het stuifmeel voortbrengt. Een meeldraad bestaat uit een helmdraad (filament) en een helmknop (anthere), met gewoonlijk twee helmhokjes (theca). Er zijn tweeslachtige bloemen met meeldraden en stamper(s) en er zijn eenslachtige bloemen met alleen meeldraden (mannelijke bloemen) of alleen stampers (vrou...

 

 

For other ships with the same name, see SS Hamburg and SS Hamburg (1969). SS Hamburg History Weimar Republic NameSS Hamburg OwnerHamburg America Line RouteHamburg–New York City BuilderBlohm & Voss, Hamburg, Germany Yard number473 Launched14 November 1925 In service28 March 1926 FateSold to the Kriegsmarine Nazi Germany NameHamburg OperatorKriegsmarine Commissioned1 January 1940 FateSunk by mine, 7 March 1945 Soviet Union NameYuri Dolgoruki AcquiredBy salvage, 1950 In service12 July 1960...