The pleurae (sg.: pleura)[1] are the two flattened closed sacs filled with pleural fluid, each ensheathing each lung and lining their surrounding tissues, locally appearing as two opposing layers of serous membrane separating the lungs from the mediastinum, the inside surfaces of the surrounding chest walls and the diaphragm. Although wrapped onto itself resulting in an apparent double layer, each lung is surrounded by a single, continuous pleural membrane.
The portion of the pleura that covers the surface of each lung is often called the visceral pleura. This can lead to some confusion, as the lung is not the only visceral organ covered by the pleura. The pleura typically dips between the lobes of the lung as fissures, and is formed by the invagination of lung buds into each thoracic sac during embryonic development.[2] The portion of the pleura seen as the outer layer covers the chest wall, the diaphragm and the mediastinum and is often also misleadingly called the parietal pleura.
A correct anatomical nomenclature refrains from using the ambiguous terms visceral and parietal in favour of a 4-portion system based on the structures the pleura covers: pulmonary (of the lung proper), costal, diaphragmatic and mediastinal pleura.
Using the verb to line leads to additional confusion, as this is connected to the concept of concavity, which might not necessarily apply in all cases (the mediastinal surface is concave in some regions and convex in others).
The portion of pleura that covers the mediastinum is called mediastinal (fibrous pericardium, oesophagus, thoracic aorta and its main branches). The diaphragmatic portion covers the upper surface of the diaphragm. The costal portion covers the inside of the rib cage. Some authors also designate a cervical portion (covering the underside of the suprapleural membrane).
The pulmonary pleura covers the entire lung parenchyma. It meets the mediastinal pleura at the root of the lung ("hilum") through a smooth fold known as pleural reflection. A bell sleeve-like extension of the pulmonary pleura hanging under to the hilum is known as the pulmonary ligament.
Between the two layers of the pleura is what historically has been referred to as a potential space, which in reality is an actual space of about 15 μm. This is called the pleural cavity (also pleural space).[2] It contains a tiny amount of serous fluid (pleural fluid) secreted by the pleurae, at an average pressure that is below the atmospheric pressure under healthy conditions. The two lungs, each bounded by a two-layered pleural sac, almost fill the thoracic cavity.
Anatomy
Each pleura comprises a superficial serosa made of a simple monolayer of flat (squamous) or cuboidal mesothelial cells with microvilli up to 6 μm (0.00024 in) long. The mesothelium is without basement membrane, and supported by a well-vascularized underlying loose connective tissue containing two poorly defined layers of elastin-rich laminae. The costal parietal pleurae also have adipocytes in the subserosa, which present as subpleural/extrapleural fats and are histologically considered belonging to the endothoracic fascia that separates the subserosa from the inner periosteum of the ribs. Both pleurae are quite firmly attached to their underlying structures, and are usually covered by surface glycocalyces that limit fluid loss and reduce friction.
The enclosed space between the parietal and visceral pleurae, known as the pleural space, is normally filled only by a tiny amount (less than 10 mL or 0.34 US fl oz) of serous fluid secreted from the apical region of the parietal pleura. The combination of surface tension, oncotic pressure, and the fluid pressure drop caused by the inward elastic recoil of the lung parenchyma and the rigidity of the chest wall, results in a normally negative pressure of -5 cmH2O (approximately −3.68 mmHg or −0.491 kPa) within the pleural space, causing it to mostly stay collapsed as a potential space that acts as a functionally vacuumousinterface between the parietal and visceral pleurae. Contracting the respiratory muscles expands the chest cavity, causing the attached parietal pleura to also expand outwards. If the pleural functional vacuum stays intact, the pleural space will remain as collapsed as possible and cause the visceral pleura to be pulled along outwards, which in turn draws the underlying lung also into expansion. This transmits the pressure negativity into the alveoli and bronchioli, thus facilitating inhalation.[4][5]
Visceral pleura
The visceral pleura (from Latin: viscera, lit. 'organ') covers the lung surfaces and the hilar structures and extends caudally from the hilum as a mesentery-like band called the pulmonary ligament. Each lung is divided into lobes by the infoldings of the pleura as fissures. The fissures are double folds of pleura that section the lungs and help in their expansion,[6] allowing the lung to ventilate more effectively even if parts of it (usually the basal segments) fail to expand properly due to congestion or consolidation.The function of the visceral pleura is to produce and reabsorb fluid.[7] It is an area that is insensitive to pain due to its association with the lung and innervation by visceral sensory neurons.[8]
Visceral pleura also forms interlobular septa (that separates secondary pulmonary lobules).[9] Interlobular septa contains connective tissue, pulmonary veins, and lymphatics.[10]
Parietal pleura
The parietal pleura (from Latin: paries, lit. 'wall') lines the inside of the thoracic cavity which is set apart from the thoracic wall by the endothoracic fascia. The Parietal includes the inner surface of the rib cage and the upper surface of the diaphragm, as well as the side surfaces of the mediastinum, from which it separates the pleural cavity. It joins the visceral pleura at the pericardial base of the pulmonary hilum and pulmonary ligament as a smooth but acutely angled circumferential junction known as the hilar reflection.[11]
The parietal pleura is subdivided according to the surface it covers.
The diaphragmatic pleura is the portion covering the convex upper surface of the diaphragm. Its junction with the costal pleura at the diaphragmatic margin is a sharp gutter known as the costodiaphragmatic recess, which has diagnostic significance on plain radiography.
The visceral and parietal pleurae, like all mesothelia, both derive from the lateral plate mesoderms. During the third week of embryogenesis, each lateral mesoderm splits into two layers. The dorsal layer joins overlying somites and ectoderm to form the somatopleure; and the ventral layer joins the underlying endoderm to form the splanchnopleure.[13] The dehiscence of these two layers creates a fluid-filled cavity on each side, and with the ventral infolding and the subsequent midline fusion of the trilaminar disc, forms a pair of intraembryonic coeloms anterolaterally around the gut tube during the fourth week, with the splanchnopleure on the inner cavity wall and the somatopleure on the outer cavity wall.[citation needed]
The cranial end of the intraembryonic coeloms fuse early to form a single cavity, which rotates anteriorly and apparently descends inverted in front of the thorax, and is later encroached by the growing primordial heart as the pericardial cavity. The caudal portions of the coeloms fuse later below the umbilical vein to become the larger peritoneal cavity, separated from the pericardial cavity by the transverse septum. The two cavities communicate via a slim pair of remnant coeloms adjacent to the upper foregut called the pericardioperitoneal canal. During the fifth week, the developing lung buds begin to invaginate into these canals, creating a pair of enlarging cavities that encroach into the surrounding somites and further displace the transverse septum caudally — namely the pleural cavities. The mesothelia pushed out by the developing lungs arise from the splanchnopleure, and become the visceral pleurae; while the other mesothelial surfaces of the pleural cavities arise from the somatopleure, and become the parietal pleurae.[citation needed]
Pleural disease or lymphatic blockages can lead to a build-up of serous fluid within the pleural space, known as a pleural effusion. Pleural effusion obliterates the pleural vacuum and can collapse the lung (due to hydrostatic pressure), impairing ventilation and leading to type 2 respiratory failure. The condition can be treated by mechanically removing the fluid via thoracocentesis (also known as a "pleural tap") with a pigtail catheter, a chest tube, or a thoracoscopic procedure. Infected pleural effusion can lead to pleural empyema, which can create significant adhesion and fibrosis that require division and decortication. For recurrent pleural effusions, pleurodesis can be performed to establish permanent obliteration of the pleural space.[14]
^Gorman, Niamh, MSc; Salvador, Francesca, MSc (29 October 2020). "The Anatomy of the Pleural cavity". The Ken Hub Library. Dotdash publishing family. Retrieved 11 June 2021.{{cite web}}: CS1 maint: multiple names: authors list (link)
^"Parietal pleura". The Lecturio Medical Concept Library. Retrieved 2021-06-12.
^Mahabadi, Navid; Goizueta, Alberto A; Bordoni, Bruno (7 February 2021). "Anatomy, Thorax, Lung Pleura And Mediastinum". National Center for Biotechnology Information, U.S. National Library of Medicine. PMID30085590. Retrieved 11 June 2021.
^Mahabadi, Navid; Goizueta, Alberto A; Bordoni, Bruno (7 February 2021). "Anatomy, Thorax, Lung Pleura And Mediastinum". National Center for Biotechnology Information, U.S. National Library of Medicine. PMID30085590. Retrieved 11 June 2021.