This definition is valid for arbitrary complex order s and for all complex arguments z with |z| < 1; it can be extended to |z| ≥ 1 by the process of analytic continuation. (Here the denominator ks is understood as exp(s ln k)). The special case s = 1 involves the ordinary natural logarithm, Li1(z) = −ln(1−z), while the special cases s = 2 and s = 3 are called the dilogarithm (also referred to as Spence's function) and trilogarithm respectively. The name of the function comes from the fact that it may also be defined as the repeated integral of itself:
thus the dilogarithm is an integral of a function involving the logarithm, and so on. For nonpositive integer orders s, the polylogarithm is a rational function.
Properties
In the case where the order is an integer, it will be represented by (or when negative). It is often convenient to define where is the principal branch of the complex logarithm so that Also, all exponentiation will be assumed to be single-valued:
Depending on the order , the polylogarithm may be multi-valued. The principal branch of is taken to be given for by the above series definition and taken to be continuous except on the positive real axis, where a cut is made from to such that the axis is placed on the lower half plane of . In terms of , this amounts to . The discontinuity of the polylogarithm in dependence on can sometimes be confusing.
For real argument , the polylogarithm of real order is real if , and its imaginary part for is (Wood 1992, §3):
Going across the cut, if ε is an infinitesimally small positive real number, then:
Both can be concluded from the series expansion (see below) of Lis(eμ) about μ = 0.
The derivatives of the polylogarithm follow from the defining power series:
which can be proved using the series definition of the polylogarithm and the orthogonality of the exponential terms (see e.g. discrete Fourier transform).
For particular cases, the polylogarithm may be expressed in terms of other functions (see below). Particular values for the polylogarithm may thus also be found as particular values of these other functions.
For integer values of the polylogarithm order, the following explicit expressions are obtained by repeated application of z·∂/∂z to Li1(z):
Accordingly the polylogarithm reduces to a ratio of polynomials in z, and is therefore a rational function of z, for all nonpositive integer orders. The general case may be expressed as a finite sum:
where S(n,k) are the Stirling numbers of the second kind. Equivalent formulae applicable to negative integer orders are (Wood 1992, § 6):
and:
where are the Eulerian numbers. All roots of Li−n(z) are distinct and real; they include z = 0, while the remainder is negative and centered about z = −1 on a logarithmic scale. As n becomes large, the numerical evaluation of these rational expressions increasingly suffers from cancellation (Wood 1992, § 6); full accuracy can be obtained, however, by computing Li−n(z) via the general relation with the Hurwitz zeta function (see below).
Some particular expressions for half-integer values of the argument z are:
where ζ is the Riemann zeta function. No formulae of this type are known for higher integer orders (Lewin 1991, p. 2), but one has for instance (Borwein, Borwein & Girgensohn 1995):
which involves the alternating double sum
In general one has for integer orders n ≥ 2 (Broadhurst 1996, p. 9):
where ζ(s1, …, sk) is the multiple zeta function; for example:
As a straightforward consequence of the series definition, values of the polylogarithm at the pth complex roots of unity are given by the Fourier sum:
where ζ is the Hurwitz zeta function. For Re(s) > 1, where Lis(1) is finite, the relation also holds with m = 0 or m = p. While this formula is not as simple as that implied by the more general relation with the Hurwitz zeta function listed under relationship to other functions below, it has the advantage of applying to non-negative integer values of s as well. As usual, the relation may be inverted to express ζ(s, m⁄p) for any m = 1, …, p as a Fourier sum of Lis(exp(2πik⁄p)) over k = 1, …, p.
The polylogarithm is related to Dirichlet eta function and the Dirichlet beta function: where η(s) is the Dirichlet eta function. For pure imaginary arguments, we have: where β(s) is the Dirichlet beta function.
The polylogarithm is related to the Hurwitz zeta function by: which relation, however, is invalidated at positive integer s by poles of the gamma functionΓ(1 − s), and at s = 0 by a pole of both zeta functions; a derivation of this formula is given under series representations below. With a little help from a functional equation for the Hurwitz zeta function, the polylogarithm is consequently also related to that function via (Jonquière 1889): which relation holds for 0 ≤ Re(x) < 1 if Im(x) ≥ 0, and for 0 < Re(x) ≤ 1 if Im(x) < 0. Equivalently, for all complex s and for complex z ∉ (0, 1], the inversion formula reads and for all complex s and for complex z ∉ (1, ∞) For z ∉ (0, ∞), one has ln(−z) = −ln(−1⁄z), and both expressions agree. These relations furnish the analytic continuation of the polylogarithm beyond the circle of convergence |z| = 1 of the defining power series. (The corresponding equation of Jonquière (1889, eq. 5) and Erdélyi et al. (1981, § 1.11-16) is not correct if one assumes that the principal branches of the polylogarithm and the logarithm are used simultaneously.) See the next item for a simplified formula when s is an integer.
For positive integer polylogarithm orders s, the Hurwitz zeta function ζ(1−s, x) reduces to Bernoulli polynomials, ζ(1−n, x) = −Bn(x) / n, and Jonquière's inversion formula for n = 1, 2, 3, … becomes: where again 0 ≤ Re(x) < 1 if Im(x) ≥ 0, and 0 < Re(x) ≤ 1 if Im(x) < 0. Upon restriction of the polylogarithm argument to the unit circle, Im(x) = 0, the left hand side of this formula simplifies to 2 Re(Lin(e2πix)) if n is even, and to 2i Im(Lin(e2πix)) if n is odd. For negative integer orders, on the other hand, the divergence of Γ(s) implies for all z that (Erdélyi et al. 1981, § 1.11-17): More generally, one has for n = 0, ±1, ±2, ±3, …: where both expressions agree for z ∉ (0, ∞). (The corresponding equation of Jonquière (1889, eq. 1) and Erdélyi et al. (1981, § 1.11-18) is again not correct.)
The inverse tangent integralTis(z) (Lewin 1958, Ch. VII § 1.2) can be expressed in terms of polylogarithms: The relation in particular implies: which explains the function name.
Any of the following integral representations furnishes the analytic continuation of the polylogarithm beyond the circle of convergence |z| = 1 of the defining power series.
The polylogarithm can be expressed in terms of the integral of the Bose–Einstein distribution:
This converges for Re(s) > 0 and all z except for z real and ≥ 1. The polylogarithm in this context is sometimes referred to as a Bose integral but more commonly as a Bose–Einstein integral (Dingle 1957a, Dingle, Arndt & Roy 1957).[note 1] Similarly, the polylogarithm can be expressed in terms of the integral of the Fermi–Dirac distribution:
This converges for Re(s) > 0 and all z except for z real and ≤ −1. The polylogarithm in this context is sometimes referred to as a Fermi integral or a Fermi–Dirac integral (GSL 2010, Dingle 1957b). These representations are readily verified by Taylor expansion of the integrand with respect to z and termwise integration. The papers of Dingle contain detailed investigations of both types of integrals.
The polylogarithm is also related to the integral of the Maxwell–Boltzmann distribution:
This also gives the asymptotic behavior of polylogarithm at the vicinity of origin.
A complementary integral representation applies to Re(s) < 0 and to all z except to z real and ≥ 0:
This integral follows from the general relation of the polylogarithm with the Hurwitz zeta function (see above) and a familiar integral representation of the latter.
The polylogarithm may be quite generally represented by a Hankel contour integral (Whittaker & Watson 1927, § 12.22, § 13.13), which extends the Bose–Einstein representation to negative orders s. As long as the t = μpole of the integrand does not lie on the non-negative real axis, and s ≠ 1, 2, 3, …, we have:
where H represents the Hankel contour. The integrand has a cut along the real axis from zero to infinity, with the axis belonging to the lower half plane of t. The integration starts at +∞ on the upper half plane (Im(t) > 0), circles the origin without enclosing any of the poles t = μ + 2kπi, and terminates at +∞ on the lower half plane (Im(t) < 0). For the case where μ is real and non-negative, we can simply subtract the contribution of the enclosed t = μ pole:
where R is the residue of the pole:
When the Abel–Plana formula is applied to the defining series of the polylogarithm, a Hermite-type integral representation results that is valid for all complex z and for all complex s:
where Γ is the upper incomplete gamma-function. All (but not part) of the ln(z) in this expression can be replaced by −ln(1⁄z). A related representation which also holds for all complex s,
avoids the use of the incomplete gamma function, but this integral fails for z on the positive real axis if Re(s) ≤ 0. This expression is found by writing 2s Lis(−z) / (−z) = Φ(z2, s, 1⁄2) − z Φ(z2, s, 1), where Φ is the Lerch transcendent, and applying the Abel–Plana formula to the first Φ series and a complementary formula that involves 1 / (e2πt + 1) in place of 1 / (e2πt − 1) to the second Φ series.
We can express an integral for the polylogarithm by integrating the ordinary geometric series termwise for as (Borwein, Borwein & Girgensohn 1994, §2, eqn. 4) harv error: no target: CITEREFBorweinBorweinGirgensohn1994 (help)
Series representations
As noted under integral representations above, the Bose–Einstein integral representation of the polylogarithm may be extended to negative orders s by means of Hankel contour integration:
where H is the Hankel contour, s ≠ 1, 2, 3, …, and the t = μ pole of the integrand does not lie on the non-negative real axis. The contour can be modified so that it encloses the poles of the integrand at t − μ = 2kπi, and the integral can be evaluated as the sum of the residues (Wood 1992, § 12, 13; Gradshteyn & Ryzhik 1980, § 9.553 harvnb error: no target: CITEREFGradshteynRyzhik1980 (help)):
This will hold for Re(s) < 0 and all μ except where eμ = 1. For 0 < Im(μ) ≤ 2π the sum can be split as:
where the two series can now be identified with the Hurwitz zeta function:
This relation, which has already been given under relationship to other functions above, holds for all complex s ≠ 0, 1, 2, 3, … and was first derived in (Jonquière 1889, eq. 6).
In order to represent the polylogarithm as a power series about μ = 0, we write the series derived from the Hankel contour integral as:
When the binomial powers in the sum are expanded about μ = 0 and the order of summation is reversed, the sum over h can be expressed in closed form:
This result holds for |μ| < 2π and, thanks to the analytic continuation provided by the zeta functions, for all s ≠ 1, 2, 3, … . If the order is a positive integer, s = n, both the term with k = n − 1 and the gamma function become infinite, although their sum does not. One obtains (Wood 1992, § 9; Gradshteyn & Ryzhik 1980, § 9.554 harvnb error: no target: CITEREFGradshteynRyzhik1980 (help)):
where the sum over h vanishes if k = 0. So, for positive integer orders and for |μ| < 2π we have the series:
where Hn denotes the nth harmonic number:
The problem terms now contain −ln(−μ) which, when multiplied by μn−1, will tend to zero as μ → 0, except for n = 1. This reflects the fact that Lis(z) exhibits a true logarithmic singularity at s = 1 and z = 1 since:
For s close, but not equal, to a positive integer, the divergent terms in the expansion about μ = 0 can be expected to cause computational difficulties (Wood 1992, § 9). Erdélyi's corresponding expansion (Erdélyi et al. 1981, § 1.11-15) in powers of ln(z) is not correct if one assumes that the principal branches of the polylogarithm and the logarithm are used simultaneously, since ln(1⁄z) is not uniformly equal to −ln(z).
For nonpositive integer values of s, the zeta function ζ(s − k) in the expansion about μ = 0 reduces to Bernoulli numbers: ζ(−n − k) = −B1+n+k / (1 + n + k). Numerical evaluation of Li−n(z) by this series does not suffer from the cancellation effects that the finite rational expressions given under particular values above exhibit for large n.
By use of the identity
the Bose–Einstein integral representation of the polylogarithm (see above) may be cast in the form:
Replacing the hyperbolic cotangent with a bilateral series,
then reversing the order of integral and sum, and finally identifying the summands with an integral representation of the upper incomplete gamma function, one obtains:
For both the bilateral series of this result and that for the hyperbolic cotangent, symmetric partial sums from −kmax to kmax converge unconditionally as kmax → ∞. Provided the summation is performed symmetrically, this series for Lis(z) thus holds for all complex s as well as all complex z.
Introducing an explicit expression for the Stirling numbers of the second kind into the finite sum for the polylogarithm of nonpositive integer order (see above) one may write:
The infinite series obtained by simply extending the outer summation to ∞ (Guillera & Sondow 2008, Theorem 2.1):
turns out to converge to the polylogarithm for all complex s and for complex z with Re(z) < 1⁄2, as can be verified for |−z⁄(1−z)| < 1⁄2 by reversing the order of summation and using:
The inner coefficients of these series can be expressed by Stirling-number-related formulas involving the generalized harmonic numbers. For example, see generating function transformations to find proofs (references to proofs) of the following identities:
For the other arguments with Re(z) < 1⁄2 the result follows by analytic continuation. This procedure is equivalent to applying Euler's transformation to the series in z that defines the polylogarithm.
Asymptotic expansions
For |z| ≫ 1, the polylogarithm can be expanded into asymptotic series in terms of ln(−z):
where B2k are the Bernoulli numbers. Both versions hold for all s and for any arg(z). As usual, the summation should be terminated when the terms start growing in magnitude. For negative integer s, the expansions vanish entirely; for non-negative integer s, they break off after a finite number of terms. Wood (1992, § 11) describes a method for obtaining these series from the Bose–Einstein integral representation (his equation 11.2 for Lis(eμ) requires −2π < Im(μ) ≤ 0).
The following limits result from the various representations of the polylogarithm (Wood 1992, § 22):
Wood's first limit for Re(μ) → ∞ has been corrected in accordance with his equation 11.3. The limit for Re(s) → −∞ follows from the general relation of the polylogarithm with the Hurwitz zeta function (see above).
The dilogarithm is the polylogarithm of order s = 2. An alternate integral expression of the dilogarithm for arbitrary complex argument z is (Abramowitz & Stegun 1972, § 27.7):
A source of confusion is that some computer algebra systems define the dilogarithm as dilog(z) = Li2(1−z).
In the case of real z ≥ 1 the first integral expression for the dilogarithm can be written as
from which expanding ln(t−1) and integrating term by term we obtain
The Abel identity for the dilogarithm is given by (Abel 1881)
This is immediately seen to hold for either x = 0 or y = 0, and for general arguments is then easily verified by differentiation ∂/∂x ∂/∂y. For y = 1−x the identity reduces to Euler's reflection formula
where Li2(1) = ζ(2) = 1⁄6π2 has been used and x may take any complex value.
In terms of the new variables u = x/(1−y), v = y/(1−x) the Abel identity reads
which corresponds to the pentagon identity given in (Rogers 1907).
From the Abel identity for x = y = 1−z and the square relationship we have Landen's identity
and applying the reflection formula to each dilogarithm we find the inversion formula
and for real z ≥ 1 also
Known closed-form evaluations of the dilogarithm at special arguments are collected in the table below. Arguments in the first column are related by reflection x ↔ 1−x or inversion x ↔ 1⁄x to either x = 0 or x = −1; arguments in the third column are all interrelated by these operations.
Maximon (2003) discusses the 17th to 19th century references. The reflection formula was already published by Landen in 1760, prior to its appearance in a 1768 book by Euler (Maximon 2003, § 10); an equivalent to Abel's identity was already published by Spence in 1809, before Abel wrote his manuscript in 1826 (Zagier 1989, § 2). The designation bilogarithmische Function was introduced by Carl Johan Danielsson Hill (professor in Lund, Sweden) in 1828 (Maximon 2003, § 10). Don Zagier (1989) has remarked that the dilogarithm is the only mathematical function possessing a sense of humor.
Leonard Lewin discovered a remarkable and broad generalization of a number of classical relationships on the polylogarithm for special values. These are now called polylogarithm ladders. Define as the reciprocal of the golden ratio. Then two simple examples of dilogarithm ladders are
The polylogarithm has two branch points; one at z = 1 and another at z = 0. The second branch point, at z = 0, is not visible on the main sheet of the polylogarithm; it becomes visible only when the function is analytically continued to its other sheets. The monodromy group for the polylogarithm consists of the homotopy classes of loops that wind around the two branch points. Denoting these two by m0 and m1, the monodromy group has the group presentation
For the special case of the dilogarithm, one also has that wm0 = m0w, and the monodromy group becomes the Heisenberg group (identifying m0, m1 and w with x, y, z) (Vepstas 2008).
Notes
^Bose integral is result of multiplication between Gamma function and Zeta function.
One can begin with equation for Bose integral, then use series equation.
Secondly, regroup expressions.
References
Abel, N.H. (1881) [1826]. "Note sur la fonction "(PDF). In Sylow, L.; Lie, S. (eds.). Œuvres complètes de Niels Henrik Abel − Nouvelle édition, Tome II (in French). Christiania [Oslo]: Grøndahl & Søn. pp. 189–193. (this 1826 manuscript was only published posthumously.)
Borwein, J.M.; Bradley, D.M.; Broadhurst, D.J.; Lisonek, P. (2001). "Special Values of Multiple Polylogarithms". Transactions of the American Mathematical Society. 353 (3): 907–941. arXiv:math/9910045. doi:10.1090/S0002-9947-00-02616-7. S2CID11373360.
Broadhurst, D.J. (April 21, 1996). "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory". arXiv:hep-th/9604128.
Guillera, J.; Sondow, J. (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math.NT/0506319. doi:10.1007/s11139-007-9102-0. S2CID119131640.
Nielsen, N. (1909). "Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Eine Monographie". Nova Acta Leopoldina (in German). XC (3). Halle – Leipzig, Germany: Kaiserlich-Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher: 121–212. JFM40.0478.01.
Prudnikov, A.P.; Marichev, O.I.; Brychkov, Yu.A. (1990). Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach. ISBN978-2-88124-682-1. (see § 1.2, "The generalized zeta function, Bernoulli polynomials, Euler polynomials, and polylogarithms", p. 23.)
Schrödinger, E. (1952). Statistical Thermodynamics (2nd ed.). Cambridge, UK: Cambridge University Press.
Truesdell, C. (1945). "On a function which occurs in the theory of the structure of polymers". Annals of Mathematics. Second Series. 46 (1): 144–157. doi:10.2307/1969153. JSTOR1969153.
Zagier, D. (1989). "The dilogarithm function in geometry and number theory". Number Theory and Related Topics: papers presented at the Ramanujan Colloquium, Bombay, 1988. Studies in Mathematics. Vol. 12. Bombay: Tata Institute of Fundamental Research and Oxford University Press. pp. 231–249. ISBN0-19-562367-3. (also appeared as "The remarkable dilogarithm" in Journal of Mathematical and Physical Sciences22 (1988), pp. 131–145, and as Chapter I of (Zagier 2007).)
Zagier, D. (2007). "The Dilogarithm Function"(PDF). In Cartier, P.E.; et al. (eds.). Frontiers in Number Theory, Physics, and Geometry II – On Conformal Field Theories, Discrete Groups and Renormalization. Berlin: Springer-Verlag. pp. 3–65. ISBN978-3-540-30307-7.
Katedral Ciudad Real Ciudad Real merupakan sebuah kota di Spanyol. Kota ini letaknya di bagian tengah. Tepatnya di wilayah otonomi Castile-La Mancha. Pada tahun 2009, kota ini memiliki jumlah penduduk sebesar 74.014 jiwa dan memiliki luas wilayah 289,98 km². Kota ini memiliki angka kepadatan penduduk sebesar 255,2 jiwa/km². Pranala luar Situs resmi Artikel bertopik Eropa ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs
تتطور صناعة السيارات في مصر منذ 50 عامًا. ويتم بيع أكثر من 200,000 سيارة سنويًا وهي الآن ثاني أكبر سوق في إفريقيا وتحتل المرتبة 42 في العالم، حيث يبلغ إنتاجها السنوي أكثر من 70,000 سيارة. بعد العديد من الإخفاقات والنجاحات، أصبحت صناعة السيارات المصرية أكثر تركيزًا على عمليات التجم�...
Movable object used by actors on a stage or set For other uses, see Prop (disambiguation). A prop table backstage for the musical number Food, Glorious Food in the musical production, Oliver! A prop, formally known as a (theatrical) property,[1] is an object actors use on stage or screen during a performance or screen production.[2] In practical terms, a prop is considered to be anything movable or portable on a stage or a set, distinct from the actors, scenery, costumes, and ...
Internet-like structure connecting everyday physical objects Not to be confused with Web of Things. Internet of things (IoT) General concepts Computer appliance Distributed computing Embedded system Fog computing Home automation Industrial internet of things Mesh networking Wireless sensor network Communication protocols 6LoWPAN Bluetooth LE Jini NB-IoT LTE-M LoRa Matter Thread Z-Wave zeroconf Zigbee Comparison of IoT protocols vte The Internet of things (IoT) describes devices with sensors, ...
العلاقات البنمية التشادية بنما تشاد بنما تشاد تعديل مصدري - تعديل العلاقات البنمية التشادية هي العلاقات الثنائية التي تجمع بين بنما وتشاد.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بنما تشاد المساحة (�...
Численность населения республики по данным Росстата составляет 1 442 251[1] чел. (2023). Плотность населения — 34,29 чел./км2 (2023). Городское население — 66,02[2] % (2022). Содержание 1 Численность населения 1.1 Демография 1.2 Миграция 2 Распределение населения по террит�...
Mauro Icardi Icardi playing for Inter Milan in 2018Informasi pribadiNama lengkap Mauro Emanuel Icardi Rivero[1]Tanggal lahir 19 Februari 1993 (umur 31)[2]Tempat lahir Rosario, ArgentinaTinggi 181 m (593 ft 10 in)[3]Posisi bermain StrikerInformasi klubKlub saat ini GalatasarayNomor 9Karier junior2002–2008 Vecindario2008–2011 Barcelona2011–2012 SampdoriaKarier senior*Tahun Tim Tampil (Gol)2011–2013 Sampdoria 33 (11)2013–2020 Inter Milan 188...
George Arthur Akerlof Premio Nobel per l'economia 2001 George Arthur Akerlof (New Haven, 17 giugno 1940) è un economista statunitense, professore di economia all'Università della California - Berkeley. Ha vinto il Premio Nobel per l'economia nel 2001 (insieme a Michael Spence e Joseph E. Stiglitz) per le loro analisi dei mercati con informazioni asimmetriche. Indice 1 Biografia 2 Opere 3 Note 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Biografia Figlio del chimico svedese, Gös...
Theseus melawan Kerkion. Kerkion (Κερκύων) adalah salah satu tokoh dalam mitologi Yunani dan merupakan raja Eleusis. Orang tua Kerkion menurut beberapa versi yaitu: Poseidon dan salah satu anak Amfiktion,[1] atau Poseidon dan nimfa Argiope,[2] atau Brankhus dan nimfa Argiope,[3] atau Hefaistos.[4] Kerkion mempunyai dua orang anak yaitu Alope dan Hippothous. Kerkion sering berdiri di jalan-jalan Eleusis dan menantang gulat pada orang yang lewat. Dia berja...
Mississippi BurningSutradaraAlan ParkerProduserRobert F. ColesberryDitulis olehChris GerolmoPemeranGene Hackman,Willem Dafoe,Frances McDormandDistributorMGMTanggal rilis9 Desember 1988Durasi128 menitAnggaranUS$ 15.000.000 (perkiraan)IMDbInformasi di IMDb Mississippi Burning (1988) adalah sebuah film garapan sutradara Alan Parker yang bertema tentang versi fiksi suatu investigasi pada kasus pembunuhan tiga aktivis sipil di Mississippi, Amerika Serikat, yang pernah terjadi pada 1964. Film ini b...
J.B.F. Champlin & Son transformed into Cattaraugus Cutlery in 1886, excelling in knife production This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Cattaraugus Cutlery Company – news · newspapers · books · scholar · JSTOR (October 2019) The Cattaraugus Cutlery Company building in Little Valley, N...
This is a list of college athletics programs in the U.S. state of Virginia. NCAA Division I George MasonHamptonJames MadisonLibertyLongwoodNorfolk StateOld DominionRadfordRichmondVCUVirginiaVMIVirginia TechWilliam & Maryclass=notpageimage| Full NCAA Division I member colleges in Virginia. – FBS Football, – FCS Football, – Non-football Team School City Conference Sport sponsorship Foot-ball Basketball Base-ball Soft-ball Soccer M W M W George Mason Patriots George Mason University F...
لمعانٍ أخرى، طالع أوغدن (توضيح). أوغدن الإحداثيات 42°02′24″N 94°01′50″W / 42.04°N 94.030555555556°W / 42.04; -94.030555555556 [1] تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة بون خصائص جغرافية المساحة 3.538326 كيلومتر مربع3.557336 كيلومتر مر�...
Maeckeritzstrasse Building, Hans Scharoun In der Goebelstraße by Hugo Häring The Siemensstadt Settlement (German: Großsiedlung Siemensstadt; also known as Ring Settlement or Ringsiedlung) is a nonprofit residential community in the Charlottenburg-Wilmersdorf district of Berlin. It is one of the six Modernist Housing Estates in Berlin recognized in July 2008 by UNESCO as a World Heritage Site because of their outstanding modernist architecture and contribution to the progressive housing ref...
Nutria marina Estado de conservaciónEn peligro (UICN 3.1)[1]TaxonomíaReino: AnimaliaFilo: ChordataSubfilo: VertebrataClase: MammaliaSubclase: TheriaInfraclase: PlacentaliaOrden: CarnivoraSuborden: CaniformiaFamilia: MustelidaeSubfamilia: LutrinaeGénero: EnhydraFleming, 1828Especie: E. lutris(Linnaeus, 1758)Distribución Distribución de E. lutris[editar datos en Wikidata] Distribución moderna e histórica de la nutria marina. Nutria marina durmiendo. La nutria...
لمعانٍ أخرى، طالع كليوباترا (توضيح). كليوباتراCleopatra (بالإنجليزية) معلومات عامةالصنف الفني دراما، ملحمي، تاريخيتاريخ الصدور 1963مدة العرض 248 دقيقةاللغة الأصلية الإنجليزيةالبلد الولايات المتحدة والمملكة المتحدةمواقع التصوير ماليبو — المرية صيغة الفيلم CinemaScope (en) الجو...
Борис Миколайович Лятошинський Борис Миколайович ЛятошинськийІм'я при народженні Борис Миколайович ЛятошинськийНародився 22 листопада (4 грудня) 1894[4][5]Житомир, Російська імперія[1]Помер 15 квітня 1968(1968-04-15)[1][2][…] (73 роки)Київ, Українська РСР, СРСР[1]...
العلاقات الأنغولية البالاوية أنغولا بالاو أنغولا بالاو تعديل مصدري - تعديل العلاقات الأنغولية البالاوية هي العلاقات الثنائية التي تجمع بين أنغولا وبالاو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة أن�...
جواز سفر ترينداد وتوباغومعلومات عامةنوع المستند جواز سفرالبلد ترينيداد وتوباغوالغرض التعريف (هوية شخصية)صادر عن ترينيداد وتوباغوصالح في ترينيداد وتوباغومتطلبات الاستحقاق جنسية ترينداد وتوباغوالانتهاء 10 سنوات بالنسبة للبالغين، 5 سنوات للأطفال دون سن السادسة عشر.تعد...