Incomplete gamma function

The upper incomplete gamma function for some values of s: 0 (blue), 1 (red), 2 (green), 3 (orange), 4 (purple).
Plot of the regularized incomplete gamma function Q(2,z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the regularized incomplete gamma function Q(2,z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

Their respective names stem from their integral definitions, which are defined similarly to the gamma function but with different or "incomplete" integral limits. The gamma function is defined as an integral from zero to infinity. This contrasts with the lower incomplete gamma function, which is defined as an integral from zero to a variable upper limit. Similarly, the upper incomplete gamma function is defined as an integral from a variable lower limit to infinity.

Definition

The upper incomplete gamma function is defined as: whereas the lower incomplete gamma function is defined as: In both cases s is a complex parameter, such that the real part of s is positive.

Properties

By integration by parts we find the recurrence relations and Since the ordinary gamma function is defined as we have and

Continuation to complex values

The lower incomplete gamma and the upper incomplete gamma function, as defined above for real positive s and x, can be developed into holomorphic functions, with respect both to x and s, defined for almost all combinations of complex x and s.[1] Complex analysis shows how properties of the real incomplete gamma functions extend to their holomorphic counterparts.

Lower incomplete gamma function

Holomorphic extension

Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all complex s and x. By a theorem of Weierstrass,[3] the limiting function, sometimes denoted as ,[4] is entire with respect to both z (for fixed s) and s (for fixed z),[1] and, thus, holomorphic on C × C by Hartog's theorem.[5] Hence, the following decomposition[1] extends the real lower incomplete gamma function as a holomorphic function, both jointly and separately in z and s. It follows from the properties of and the Γ-function, that the first two factors capture the singularities of (at z = 0 or s a non-positive integer), whereas the last factor contributes to its zeros.

Multi-valuedness

The complex logarithm log z = log |z| + i arg z is determined up to a multiple of 2πi only, which renders it multi-valued. Functions involving the complex logarithm typically inherit this property. Among these are the complex power, and, since zs appears in its decomposition, the γ-function, too.

The indeterminacy of multi-valued functions introduces complications, since it must be stated how to select a value. Strategies to handle this are:

  • (the most general way) replace the domain C of multi-valued functions by a suitable manifold in C × C called Riemann surface. While this removes multi-valuedness, one has to know the theory behind it;[6]
  • restrict the domain such that a multi-valued function decomposes into separate single-valued branches, which can be handled individually.

The following set of rules can be used to interpret formulas in this section correctly. If not mentioned otherwise, the following is assumed:

Sectors

Sectors in C having their vertex at z = 0 often prove to be appropriate domains for complex expressions. A sector D consists of all complex z fulfilling z ≠ 0 and αδ < arg z < α + δ with some α and 0 < δπ. Often, α can be arbitrarily chosen and is not specified then. If δ is not given, it is assumed to be π, and the sector is in fact the whole plane C, with the exception of a half-line originating at z = 0 and pointing into the direction of α, usually serving as a branch cut. Note: In many applications and texts, α is silently taken to be 0, which centers the sector around the positive real axis.

Branches

In particular, a single-valued and holomorphic logarithm exists on any such sector D having its imaginary part bound to the range (αδ, α + δ). Based on such a restricted logarithm, zs and the incomplete gamma functions in turn collapse to single-valued, holomorphic functions on D (or C×D), called branches of their multi-valued counterparts on D. Adding a multiple of 2π to α yields a different set of correlated branches on the same set D. However, in any given context here, α is assumed fixed and all branches involved are associated to it. If |α| < δ, the branches are called principal, because they equal their real analogues on the positive real axis. Note: In many applications and texts, formulas hold only for principal branches.

Relation between branches

The values of different branches of both the complex power function and the lower incomplete gamma function can be derived from each other by multiplication of ,[1] for k a suitable integer.

Behavior near branch point

The decomposition above further shows, that γ behaves near z = 0 asymptotically like:

For positive real x, y and s, xy/y → 0, when (x, y) → (0, s). This seems to justify setting γ(s, 0) = 0 for real s > 0. However, matters are somewhat different in the complex realm. Only if (a) the real part of s is positive, and (b) values uv are taken from just a finite set of branches, they are guaranteed to converge to zero as (u, v) → (0, s), and so does γ(u, v). On a single branch of γ(b) is naturally fulfilled, so there γ(s, 0) = 0 for s with positive real part is a continuous limit. Also note that such a continuation is by no means an analytic one.

Algebraic relations

All algebraic relations and differential equations observed by the real γ(s, z) hold for its holomorphic counterpart as well. This is a consequence of the identity theorem, stating that equations between holomorphic functions valid on a real interval, hold everywhere. In particular, the recurrence relation [2] and ∂γ(s, z)/∂z = zs−1 ez [2] are preserved on corresponding branches.

Integral representation

The last relation tells us, that, for fixed s, γ is a primitive or antiderivative of the holomorphic function zs−1 ez. Consequently, for any complex u, v ≠ 0, holds, as long as the path of integration is entirely contained in the domain of a branch of the integrand. If, additionally, the real part of s is positive, then the limit γ(s, u) → 0 for u → 0 applies, finally arriving at the complex integral definition of γ[1]

Any path of integration containing 0 only at its beginning, otherwise restricted to the domain of a branch of the integrand, is valid here, for example, the straight line connecting 0 and z.

Limit for z → +∞
Real values

Given the integral representation of a principal branch of γ, the following equation holds for all positive real s, x:[7]

s complex

This result extends to complex s. Assume first 1 ≤ Re(s) ≤ 2 and 1 < a < b. Then where[8] has been used in the middle. Since the final integral becomes arbitrarily small if only a is large enough, γ(s, x) converges uniformly for x → ∞ on the strip 1 ≤ Re(s) ≤ 2 towards a holomorphic function,[3] which must be Γ(s) because of the identity theorem. Taking the limit in the recurrence relation γ(s, x) = (s − 1) γ(s − 1, x) − xs − 1 ex and noting, that lim xn ex = 0 for x → ∞ and all n, shows, that γ(s, x) converges outside the strip, too, towards a function obeying the recurrence relation of the Γ-function. It follows for all complex s not a non-positive integer, x real and γ principal.

Sectorwise convergence

Now let u be from the sector |arg z| < δ < π/2 with some fixed δ (α = 0), γ be the principal branch on this sector, and look at

As shown above, the first difference can be made arbitrarily small, if |u| is sufficiently large. The second difference allows for following estimation: where we made use of the integral representation of γ and the formula about |zs| above. If we integrate along the arc with radius R = |u| around 0 connecting u and |u|, then the last integral is where M = δ(cos δ)−Re s eIm is a constant independent of u or R. Again referring to the behavior of xn ex for large x, we see that the last expression approaches 0 as R increases towards . In total we now have: if s is not a non-negative integer, 0 < ε < π/2 is arbitrarily small, but fixed, and γ denotes the principal branch on this domain.

Overview

is:

  • entire in z for fixed, positive integer s;
  • multi-valued holomorphic in z for fixed s not an integer, with a branch point at z = 0;
  • on each branch meromorphic in s for fixed z ≠ 0, with simple poles at non-positive integers s.

Upper incomplete gamma function

As for the upper incomplete gamma function, a holomorphic extension, with respect to z or s, is given by[1] at points (s, z), where the right hand side exists. Since is multi-valued, the same holds for , but a restriction to principal values only yields the single-valued principal branch of .

When s is a non-positive integer in the above equation, neither part of the difference is defined, and a limiting process, here developed for s → 0, fills in the missing values. Complex analysis guarantees holomorphicity, because proves to be bounded in a neighbourhood of that limit for a fixed z.

To determine the limit, the power series of at z = 0 is useful. When replacing by its power series in the integral definition of , one obtains (assume x,s positive reals for now): or[4] which, as a series representation of the entire function, converges for all complex x (and all complex s not a non-positive integer).

With its restriction to real values lifted, the series allows the expansion:

When s → 0:[9] ( is the Euler–Mascheroni constant here), hence, is the limiting function to the upper incomplete gamma function as s → 0, also known as the exponential integral .[10]

By way of the recurrence relation, values of for positive integers n can be derived from this result,[11] so the upper incomplete gamma function proves to exist and be holomorphic, with respect both to z and s, for all s and z ≠ 0.

is:

  • entire in z for fixed, positive integral s;
  • multi-valued holomorphic in z for fixed s non zero and not a positive integer, with a branch point at z = 0;
  • equal to for s with positive real part and z = 0 (the limit when ), but this is a continuous extension, not an analytic one (does not hold for real s < 0!);
  • on each branch entire in s for fixed z ≠ 0.

Special values

  • if s is a positive integer,
  • if s is a positive integer,[12]
  • ,
  • ,
  • ,
  • for ,
  • ,
  • ,
  • .

Here, is the exponential integral, is the generalized exponential integral, is the error function, and is the complementary error function, .

Asymptotic behavior

  • as ,
  • as and (for real s, the error of Γ(s, x) ~ −xs / s is on the order of O(xmin{s + 1, 0}) if s ≠ −1 and O(ln(x)) if s = −1),
  • as an asymptotic series where and .[13]
  • as an asymptotic series where and , where , where is the Euler-Mascheroni constant.[13]
  • as ,
  • as ,
  • as an asymptotic series where and .[14]

Evaluation formulae

The lower gamma function can be evaluated using the power series expansion:[15] where is the Pochhammer symbol.

An alternative expansion is where M is Kummer's confluent hypergeometric function.

Connection with Kummer's confluent hypergeometric function

When the real part of z is positive, where has an infinite radius of convergence.

Again with confluent hypergeometric functions and employing Kummer's identity,

For the actual computation of numerical values, Gauss's continued fraction provides a useful expansion:

This continued fraction converges for all complex z, provided only that s is not a negative integer.

The upper gamma function has the continued fraction[16] and[citation needed]

Multiplication theorem

The following multiplication theorem holds true:

Software implementation

The incomplete gamma functions are available in various of the computer algebra systems.

Even if unavailable directly, however, incomplete function values can be calculated using functions commonly included in spreadsheets (and computer algebra packages). In Excel, for example, these can be calculated using the gamma function combined with the gamma distribution function.

  • The lower incomplete function: = EXP(GAMMALN(s))*GAMMA.DIST(x,s,1,TRUE).
  • The upper incomplete function: = EXP(GAMMALN(s))*(1-GAMMA.DIST(x,s,1,TRUE)).

These follow from the definition of the gamma distribution's cumulative distribution function.

In Python, the Scipy library provides implementations of incomplete gamma functions under scipy.special, however, it does not support negative values for the first argument. The function gammainc from the mpmath library supports all complex arguments.

Regularized gamma functions and Poisson random variables

Two related functions are the regularized gamma functions: is the cumulative distribution function for gamma random variables with shape parameter and scale parameter 1.

When is an integer, is the cumulative distribution function for Poisson random variables: If is a random variable then

This formula can be derived by repeated integration by parts.

In the context of the stable count distribution, the parameter can be regarded as inverse of Lévy's stability parameter : where is a standard stable count distribution of shape .

and are implemented as gammainc[17] and gammaincc[18] in scipy.

Derivatives

Using the integral representation above, the derivative of the upper incomplete gamma function with respect to x is The derivative with respect to its first argument is given by[19] and the second derivative by where the function is a special case of the Meijer G-function This particular special case has internal closure properties of its own because it can be used to express all successive derivatives. In general, where is the permutation defined by the Pochhammer symbol: All such derivatives can be generated in succession from: and This function can be computed from its series representation valid for , with the understanding that s is not a negative integer or zero. In such a case, one must use a limit. Results for can be obtained by analytic continuation. Some special cases of this function can be simplified. For example, , , where is the Exponential integral. These derivatives and the function provide exact solutions to a number of integrals by repeated differentiation of the integral definition of the upper incomplete gamma function.[20][21] For example, This formula can be further inflated or generalized to a huge class of Laplace transforms and Mellin transforms. When combined with a computer algebra system, the exploitation of special functions provides a powerful method for solving definite integrals, in particular those encountered by practical engineering applications (see Symbolic integration for more details).

Indefinite and definite integrals

The following indefinite integrals are readily obtained using integration by parts (with the constant of integration omitted in both cases): The lower and the upper incomplete gamma function are connected via the Fourier transform: This follows, for example, by suitable specialization of (Gradshteyn et al. 2015, §7.642).

Notes

  1. ^ a b c d e f "DLMF: §8.2 Definitions and Basic Properties ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions". dlmf.nist.gov.
  2. ^ a b c "DLMF: §8.8 Recurrence Relations and Derivatives ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions". dlmf.nist.gov.
  3. ^ a b Donald E. Marshall (Autumn 2009). "Complex Analysis" (PDF). Math 534 (student handout). University of Washington. Theorem 3.9 on p.56. Archived from the original (PDF) on 16 May 2011. Retrieved 23 April 2011.
  4. ^ a b "DLMF: §8.7 Series Expansions ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions". dlmf.nist.gov.
  5. ^ Paul Garrett. "Hartogs' Theorem: separate analyticity implies joint" (PDF). cse.umn.edu. Retrieved 21 December 2023.
  6. ^ C. Teleman. "Riemann Surfaces" (PDF). berkeley.edu. Retrieved 21 December 2023.
  7. ^ "DLMF: §5.2 Definitions ‣ Properties ‣ Chapter 5 Gamma Function". dlmf.nist.gov.
  8. ^ "DLMF: §4.4 Special Values and Limits ‣ Logarithm, Exponential, Powers ‣ Chapter 4 Elementary Functions". dlmf.nist.gov.
  9. ^ see last eq.
  10. ^ "DLMF: §8.4 Special Values ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions". dlmf.nist.gov.
  11. ^ "DLMF: 8.4 Special Values".
  12. ^ Weisstein, Eric W. "Incomplete Gamma Function". MathWorld. (equation 2)
  13. ^ a b Bender & Orszag (1978). Advanced Mathematical Methods for Scientists and Engineers. Springer.
  14. ^ "DLMF: §8.11 Asymptotic Approximations and Expansions ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions". dlmf.nist.gov.
  15. ^ "DLMF: §8.11 Asymptotic Approximations and Expansions ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions". dlmf.nist.gov.
  16. ^ Abramowitz and Stegun p. 263, 6.5.31
  17. ^ "scipy.special.gammainc — SciPy v1.11.4 Manual". docs.scipy.org.
  18. ^ "scipy.special.gammaincc — SciPy v1.11.4 Manual". docs.scipy.org.
  19. ^ K.O. Geddes, M.L. Glasser, R.A. Moore and T.C. Scott, Evaluation of Classes of Definite Integrals Involving Elementary Functions via Differentiation of Special Functions, AAECC (Applicable Algebra in Engineering, Communication and Computing), vol. 1, (1990), pp. 149–165, [1]
  20. ^ Milgram, M. S. (1985). "The generalized integro-exponential function". Math. Comp. 44 (170): 443–458. doi:10.1090/S0025-5718-1985-0777276-4. MR 0777276.
  21. ^ Mathar (2009). "Numerical Evaluation of the Oscillatory Integral over exp(i*pi*x)*x^(1/x) between 1 and infinity". arXiv:0912.3844 [math.CA]., App B

References

Read other articles:

Following is a list of Indian male actors who have worked in Marathi cinema, the language of the state of Maharashtra, India. Based in old Mumbai, it is the oldest and one of the pioneer film industries of India. For actresses please see List of Marathi film actresses Contents A B C D E F G H I J K L M N O P Q R S T U V W X Y Z The following are some of the most popular Indian actors of their decades: Actors are listed alphabetically by given name. Dadasaheb Phalke (1910s) V. Shantaram (1920...

 

Jack RoseJenisshort drink (en) [sunting di Wikidata]lbs Jack Rose adalah koktail yang terdiri dari campuran beberapa minuman seperti applejack, grenadine, dan jus lemon atau jus jeruk nipis. Minuman ini populer di era 1920an dan 1930an, tercatat muncul dalam salah satu buku klasik karya Ernest Hemmingway tahun 1926 berjudul The Sun Also Rises, di mana Jake Barnes, sang narator meminum koktail Jack Rose di bar Hôtel de Crillon Paris saat menunggu kedatangan Bratt Ashley. Ini juga minuman ...

 

History museum in Little Rock, ArkansasHistoric Arkansas MuseumHinderliter House,part of the Historic Arkansas MuseumLocation in ArkansasShow map of ArkansasLocation in United StatesShow map of the United StatesEstablished1941Location200 E. Third StreetLittle Rock, ArkansasCoordinates34°44′47″N 92°16′08″W / 34.746413°N 92.269023°W / 34.746413; -92.269023 (Historic Arkansas Museum)TypeHistory museumWebsitehistoricarkansas.org Interior of the Hinderli...

American animal rights activist Alex PachecoBornAlexander Fernando PachecoAugust 1958 (age 65–66)Joliet, Illinois, U.S.NationalityAmericanAlma materOhio State UniversityKnown forAnimal rights advocacy Founder, 600 Million Stray Dogs Need You Co-founder, People for the Ethical Treatment of Animals (PETA)AwardsU.S. Animal Rights Hall of Fame (2001) The Peace Abbey Courage of Conscience (1995) Sea Shepherd Crew Member of the Year (1979)Websitehttps://600milliondogs.org https...

 

الدوري السويدي الممتاز 1992 تفاصيل الموسم الدوري السويدي الممتاز  النسخة 68  البلد السويد  التاريخ بداية:25 أبريل 1992  نهاية:19 يوليو 1992  المنظم اتحاد السويد لكرة القدم  مباريات ملعوبة 90   عدد المشاركين 10   الدوري السويدي الممتاز 1991  الدوري السويدي الممتاز ...

 

Juan Urdangarín y de BorbónDon Juan Urdangarín y de BorbónKelahiran29 September 1999 (umur 24)Barcelona, SpanyolAyahIñaki Urdangarín, Adipati Palma de MallorcaIbuInfanta Cristina, Adipati Waita Palma de MallorcaAgamaKatolik Roma Keluarga Kerajaan Spanyol Baginda Sang RajaBaginda Sang Permaisuri Paduka Sang Putri Asturias Paduka Putri Sofia dari Spanyol Baginda Raja Juan Carlos 1 dari SpanyolBaginda Ratu Sofia dari Spanyol Paduka Sang Adipati Wanita dari Lugo Yang Terhormat Lord Fe...

IBM

Disambiguazione – Se stai cercando altri significati, vedi IBM (disambigua). International Business Machines CorporationLogo Il quartier generale della IBM ad Armonk, New York Stato Stati Uniti Forma societariapublic company Borse valoriNYSE: IBM ISINUS4592001014 Fondazione16 giugno 1911 a Endicott Fondata daCharles Ranlett FlintThomas J. Watson Sede principaleArmonk Persone chiaveArvind Krishna(Presidente del Cda e A.D.)Jim Whitehurst(Presidente) SettoreInformatica Prodotti hardw...

 

American football player and coach (born 1979) American football player Justin PeellePeelle with the Falcons in 2008Tampa Bay BuccaneersPosition:Tight ends coachPersonal informationBorn: (1979-03-15) March 15, 1979 (age 45)Fresno, California, U.S.Height:6 ft 4 in (1.93 m)Weight:251 lb (114 kg)Career informationHigh school:Dublin (CA)College:Oregon (1997–2001)NFL draft:2002 / Round: 4 / Pick: 103Career history As a player: San Diego Chargers ...

 

Indian dessert Kaju katliKaju KatliAlternative namesKaju Katri, Kaju BarfiCourseDessertPlace of originIndiaRegion or stateDeccan[1]Associated cuisineIndianCreated byBhimraoMain ingredientsCashew nuts, sugar, gheeVariationsKesri pedha, barfi, pista barfiFood energy(per serving)41 kcal (172 kJ)  Media: Kaju katli Kaju katli (literally cashew slice), also known as kaju barfi, is an Indian dessert, originating in the Deccan,[1] and is popularly consumed througho...

1988 single by Demis Roussos Quand je t'aimeSingle by Demis Roussosfrom the album Le Grec LanguageFrenchB-sideLes oiseaux de ma jeunesseReleased1987GenrePopLength3:46LabelFlarenaschSongwriter(s) Didier Barbelivien Pascal Auriat Producer(s)Pascal AuriatDemis Roussos singles chronology Summer in Her Eyes (1986) Quand je t'aime (1987) Rain and Tears (1987) AudioQuand je t'aime on YouTube Quand je t'aime (transl. French for When I Love You) is a 1987 song in French by Greek singer Demis Rou...

 

Adolf Friedrich Johann Butenandt Premio Nobel per la chimica 1939 Adolf Friedrich Johann Butenandt (Lehe, 24 marzo 1903 – Monaco di Baviera, 18 gennaio 1995) è stato un biochimico tedesco. Indice 1 Biografia 2 Onorificenze 2.1 Onorificenze tedesche 2.2 Onorificenze straniere 3 Note 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Nato a Lehe, vicino a Brema, iniziò i suoi studi universitari all'Università di Marburgo. Per il suo dottorato si unì al gruppo di lavoro d...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

United States federal law This article is about the U.S. Assault Weapons Ban of 1994 that expired in 2004. For other assault weapons bans in the U.S., see Assault weapons legislation in the United States. President Bill Clinton signing the bill into law Firearm legal topics of theUnited States Amendment II Assault weapon Assault weapons legislation Bipartisan Safer Communities Act Bump stocks Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) Brady Handgun Violence Prevention Act Campu...

 

Protected area in Jefferson County, Oregon Crooked River National GrasslandLocationJefferson County, Oregon, United StatesNearest cityMadras, OregonCoordinates44°32′N 121°07′W / 44.54°N 121.11°W / 44.54; -121.11[1]Area173,629 acres (702.65 km2)[2]Governing bodyU.S. Forest ServiceWebsiteOchoco National Forest & Crooked River National Grassland Crooked River National Grassland is a National Grassland located in Jefferson County ...

South Korean multinational conglomerate For other uses, see Hyundai (disambiguation). Hyundai Motor GroupGlobal headquarters in SeoulNative name현대자동차그룹Company typeChaebolFounded1998; 26 years ago (1998)HeadquartersSeoul, South KoreaArea servedWorldwideKey peopleChung Mong-koo (Honorary Chairman)Chung Eui-sun (Executive Chairman & CEO)Production output 3,890,726 vehicles (2021)Revenue US$224.1 billion (2018)Net income US$5.22 billion (2018)Total assets US$31...

 

Brazilian politician and lawyer (1940–2015) Luiz Henrique da SilveiraSenator from Santa CatarinaIn officeJanuary 1, 2011 – May 10, 2015Succeeded byDalirio BeberGovernor of Santa CatarinaIn officeJanuary 1, 2003 – April 9, 2006Preceded byEsperidião AminSucceeded byEduardo Pinho MoreiraGovernor of Santa CatarinaIn officeJanuary 1, 2007 – March 25, 2010Preceded byEduardo Pinho MoreiraSucceeded byLeonel PavanMinister of Science and TechnologyIn office23 October...

 

Ulladulla and Milton Times and South Coast Advertiser, 13 June 1891 The Milton Ulladulla Times is an English language newspaper published in Ulladulla, New South Wales, Australia. It is printed and published by Paul Poulus for the Milton-Ulladulla Publishing Co. Pty. Ltd.[1] History The Milton Ulladulla Times is a weekly publication. The publication began as the Ulladulla and Milton Times in 1878 and remained with this title until 1969.[2] It emerged again in 1978 as the Milt...

Mexican actor and singer (1911–1953) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jorge Negrete – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this message) In this Spanish name, the first or paternal surname is Negrete and the second or maternal famil...

 

Police agency protecting the U.S. Congress This article is about the federal police force associated with the U.S. Congress. For police in the city of Washington, D.C., see Metropolitan Police Department of the District of Columbia. Law enforcement agency United States Capitol PolicePatch of the United States Capitol PoliceEmblem of the United States Capitol PoliceBadge of the United States Capitol PoliceFlag of the United States Capitol PoliceCommon nameU.S. Capitol PoliceAbbreviationUS...