Multiple zeta function

In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by

and converge when Re(s1) + ... + Re(si) > i for all i. Like the Riemann zeta function, the multiple zeta functions can be analytically continued to be meromorphic functions (see, for example, Zhao (1999)). When s1, ..., sk are all positive integers (with s1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums. These values can also be regarded as special values of the multiple polylogarithms.[1][2]

The k in the above definition is named the "depth" of a MZV, and the n = s1 + ... + sk is known as the "weight".[3]

The standard shorthand for writing multiple zeta functions is to place repeating strings of the argument within braces and use a superscript to indicate the number of repetitions. For example,

Definition

Multiple zeta functions arise as special cases of the multiple polylogarithms

which are generalizations of the polylogarithm functions. When all of the are nth roots of unity and the are all nonnegative integers, the values of the multiple polylogarithm are called colored multiple zeta values of level . In particular, when , they are called Euler sums or alternating multiple zeta values, and when they are simply called multiple zeta values. Multiple zeta values are often written

and Euler sums are written

where . Sometimes, authors will write a bar over an corresponding to an equal to , so for example

.

Integral structure and identities

It was noticed by Kontsevich that it is possible to express colored multiple zeta values (and thus their special cases) as certain multivariable integrals. This result is often stated with the use of a convention for iterated integrals, wherein

Using this convention, the result can be stated as follows:[2]

where for .

This result is extremely useful due to a well-known result regarding products of iterated integrals, namely that

where and is the symmetric group on symbols.

To utilize this in the context of multiple zeta values, define , to be the free monoid generated by and to be the free -vector space generated by . can be equipped with the shuffle product, turning it into an algebra. Then, the multiple zeta function can be viewed as an evaluation map, where we identify , , and define

for any ,

which, by the aforementioned integral identity, makes

Then, the integral identity on products gives[2]

Two parameters case

In the particular case of only two parameters we have (with s > 1 and n, m integers):[4]

where are the generalized harmonic numbers.

Multiple zeta functions are known to satisfy what is known as MZV duality, the simplest case of which is the famous identity of Euler:

where Hn are the harmonic numbers.

Special values of double zeta functions, with s > 0 and even, t > 1 and odd, but s+t = 2N+1 (taking if necessary ζ(0) = 0):[4]

s t approximate value explicit formulae OEIS
2 2 0.811742425283353643637002772406 A197110
3 2 0.228810397603353759768746148942 A258983
4 2 0.088483382454368714294327839086 A258984
5 2 0.038575124342753255505925464373 A258985
6 2 0.017819740416835988362659530248 A258947
2 3 0.711566197550572432096973806086 A258986
3 3 0.213798868224592547099583574508 A258987
4 3 0.085159822534833651406806018872 A258988
5 3 0.037707672984847544011304782294 A258982
2 4 0.674523914033968140491560608257 A258989
3 4 0.207505014615732095907807605495 A258990
4 4 0.083673113016495361614890436542 A258991

Note that if we have irreducibles, i.e. these MZVs cannot be written as function of only.[5]

Three parameters case

In the particular case of only three parameters we have (with a > 1 and n, j, i integers):

Euler reflection formula

The above MZVs satisfy the Euler reflection formula:

for

Using the shuffle relations, it is easy to prove that:[5]

for

This function can be seen as a generalization of the reflection formulas.

Symmetric sums in terms of the zeta function

Let , and for a partition of the set , let . Also, given such a and a k-tuple of exponents, define .

The relations between the and are: and

Theorem 1 (Hoffman)

For any real , .

Proof. Assume the are all distinct. (There is no loss of generality, since we can take limits.) The left-hand side can be written as . Now thinking on the symmetric

group as acting on k-tuple of positive integers. A given k-tuple has an isotropy group

and an associated partition of : is the set of equivalence classes of the relation given by iff , and . Now the term occurs on the left-hand side of exactly times. It occurs on the right-hand side in those terms corresponding to partitions that are refinements of : letting denote refinement, occurs times. Thus, the conclusion will follow if for any k-tuple and associated partition . To see this, note that counts the permutations having cycle type specified by : since any elements of has a unique cycle type specified by a partition that refines , the result follows.[6]

For , the theorem says for . This is the main result of.[7]

Having . To state the analog of Theorem 1 for the , we require one bit of notation. For a partition

of , let .

Theorem 2 (Hoffman)

For any real , .

Proof. We follow the same line of argument as in the preceding proof. The left-hand side is now , and a term occurs on the left-hand since once if all the are distinct, and not at all otherwise. Thus, it suffices to show (1)

To prove this, note first that the sign of is positive if the permutations of cycle type are even, and negative if they are odd: thus, the left-hand side of (1) is the signed sum of the number of even and odd permutations in the isotropy group . But such an isotropy group has equal numbers of even and odd permutations unless it is trivial, i.e. unless the associated partition is .[6]

The sum and duality conjectures[6]

We first state the sum conjecture, which is due to C. Moen.[8]

Sum conjecture (Hoffman). For positive integers k and n, , where the sum is extended over k-tuples of positive integers with .

Three remarks concerning this conjecture are in order. First, it implies . Second, in the case it says that , or using the relation between the and and Theorem 1,

This was proved by Euler[9] and has been rediscovered several times, in particular by Williams.[10] Finally, C. Moen[8] has proved the same conjecture for k=3 by lengthy but elementary arguments. For the duality conjecture, we first define an involution on the set of finite sequences of positive integers whose first element is greater than 1. Let be the set of strictly increasing finite sequences of positive integers, and let be the function that sends a sequence in to its sequence of partial sums. If is the set of sequences in whose last element is at most , we have two commuting involutions and on defined by and = complement of in arranged in increasing order. The our definition of is for with .

For example, We shall say the sequences and are dual to each other, and refer to a sequence fixed by as self-dual.[6]

Duality conjecture (Hoffman). If is dual to , then .

This sum conjecture is also known as Sum Theorem, and it may be expressed as follows: the Riemann zeta value of an integer n ≥ 2 is equal to the sum of all the valid (i.e. with s1 > 1) MZVs of the partitions of length k and weight n, with 1 ≤ k ≤ n − 1. In formula:[3]

For example, with length k = 2 and weight n = 7:

Euler sum with all possible alternations of sign

The Euler sum with alternations of sign appears in studies of the non-alternating Euler sum.[5]

Notation

with are the generalized harmonic numbers.
with
with
with

As a variant of the Dirichlet eta function we define

with

Reflection formula

The reflection formula can be generalized as follows:

if we have

Other relations

Using the series definition it is easy to prove:

with
with

A further useful relation is:[5]

where and

Note that must be used for all value for which the argument of the factorials is

Other results

For all positive integers :

or more generally:

Mordell–Tornheim zeta values

The Mordell–Tornheim zeta function, introduced by Matsumoto (2003) who was motivated by the papers Mordell (1958) and Tornheim (1950), is defined by

It is a special case of the Shintani zeta function.

References

  • Tornheim, Leonard (1950). "Harmonic double series". American Journal of Mathematics. 72 (2): 303–314. doi:10.2307/2372034. ISSN 0002-9327. JSTOR 2372034. MR 0034860.
  • Mordell, Louis J. (1958). "On the evaluation of some multiple series". Journal of the London Mathematical Society. Second Series. 33 (3): 368–371. doi:10.1112/jlms/s1-33.3.368. ISSN 0024-6107. MR 0100181.
  • Apostol, Tom M.; Vu, Thiennu H. (1984), "Dirichlet series related to the Riemann zeta function", Journal of Number Theory, 19 (1): 85–102, doi:10.1016/0022-314X(84)90094-5, ISSN 0022-314X, MR 0751166
  • Crandall, Richard E.; Buhler, Joe P. (1994). "On the evaluation of Euler Sums". Experimental Mathematics. 3 (4): 275. doi:10.1080/10586458.1994.10504297. MR 1341720.
  • Borwein, Jonathan M.; Girgensohn, Roland (1996). "Evaluation of Triple Euler Sums". Electron. J. Comb. 3 (1): #R23. doi:10.37236/1247. hdl:1959.13/940394. MR 1401442.
  • Flajolet, Philippe; Salvy, Bruno (1998). "Euler Sums and contour integral representations". Exp. Math. 7: 15–35. CiteSeerX 10.1.1.37.652. doi:10.1080/10586458.1998.10504356.
  • Zhao, Jianqiang (1999). "Analytic continuation of multiple zeta functions". Proceedings of the American Mathematical Society. 128 (5): 1275–1283. doi:10.1090/S0002-9939-99-05398-8. MR 1670846.
  • Matsumoto, Kohji (2003), "On Mordell–Tornheim and other multiple zeta-functions", Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, Bonn: Univ. Bonn, MR 2075634
  • Espinosa, Olivier; Moll, Victor Hugo (2008). "The evaluation of Tornheim double sums". arXiv:math/0505647.
  • Espinosa, Olivier; Moll, Victor Hugo (2010). "The evaluation of Tornheim double sums II". Ramanujan J. 22: 55–99. arXiv:0811.0557. doi:10.1007/s11139-009-9181-1. MR 2610609. S2CID 17055581.
  • Borwein, J.M.; Chan, O-Y. (2010). "Duality in tails of multiple zeta values". Int. J. Number Theory. 6 (3): 501–514. CiteSeerX 10.1.1.157.9158. doi:10.1142/S1793042110003058. MR 2652893.
  • Basu, Ankur (2011). "On the evaluation of Tornheim sums and allied double sums". Ramanujan J. 26 (2): 193–207. doi:10.1007/s11139-011-9302-5. MR 2853480. S2CID 120229489.

Notes

  1. ^ Zhao, Jianqiang (2010). "Standard relations of multiple polylogarithm values at roots of unity". Documenta Mathematica. 15: 1–34. arXiv:0707.1459.
  2. ^ a b c Zhao, Jianqiang (2016). Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values. Series on Number Theory and its Applications. Vol. 12. World Scientific Publishing. doi:10.1142/9634. ISBN 978-981-4689-39-7.
  3. ^ a b Hoffman, Mike. "Multiple Zeta Values". Mike Hoffman's Home Page. U.S. Naval Academy. Retrieved June 8, 2012.
  4. ^ a b Borwein, David; Borwein, Jonathan; Bradley, David (September 23, 2004). "Parametric Euler Sum Identities" (PDF). CARMA, AMSI Honours Course. The University of Newcastle. Retrieved June 3, 2012.
  5. ^ a b c d Broadhurst, D. J. (1996). "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory". arXiv:hep-th/9604128.
  6. ^ a b c d Hoffman, Michael (1992). "Multiple Harmonic Series". Pacific Journal of Mathematics. 152 (2): 276–278. doi:10.2140/pjm.1992.152.275. MR 1141796. Zbl 0763.11037.
  7. ^ Ramachandra Rao, R. Sita; M. V. Subbarao (1984). "Transformation formulae for multiple series". Pacific Journal of Mathematics. 113 (2): 417–479. doi:10.2140/pjm.1984.113.471.
  8. ^ a b Moen, C. "Sums of Simple Series". Preprint.
  9. ^ Euler, L. (1775). "Meditationes circa singulare serierum genus". Novi Comm. Acad. Sci. Petropol. 15 (20): 140–186.
  10. ^ Williams, G. T. (1958). "On the evaluation of some multiple series". Journal of the London Mathematical Society. 33 (3): 368–371. doi:10.1112/jlms/s1-33.3.368.

Read other articles:

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Topik artikel ini mungkin tidak memenuhi kriteria kelayakan umum. Harap penuhi kelayakan artikel dengan: menyertakan sumber-sumber tepercaya yang ...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

العلاقات الكولومبية النيجيرية كولومبيا نيجيريا   كولومبيا   نيجيريا تعديل مصدري - تعديل   العلاقات الكولومبية النيجيرية هي العلاقات الثنائية التي تجمع بين كولومبيا ونيجيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: �...

Sweetened chocolate-flavoured milk This article is about chocolate-flavoured milk served cold. For heated chocolate milk, see Hot chocolate. For other uses, see Chocolate milk (disambiguation). Not to be confused with Milk chocolate. Chocolate milkA mug of chocolate milk next to a chocolate barTypeFlavoured milkCountry of origin British JamaicaIntroducedc. 17th century (by Hans Sloane)ColourBrownIngredientsCocoa or chocolate and milk; optionally sugar or substitute sweeteners and f...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article adopte un point de vue régional ou culturel particulier et nécessite une internationalisation (avril 2011). Merci de l'améliorer ou d'en discuter sur sa page de discussion ! Vous pouvez préciser les sections à internationaliser en utilisant {{section à internationaliser}}. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment s...

 

 

Happy by Pharrell Williams (pictured) spent ten weeks at number one, the longest of any single in 2014. It later ranked as the best-performing single of the year. This is a list of the Canadian Billboard magazine Canadian Hot 100 number-ones of 2014. Note that Billboard publishes charts with an issue date approximately 7–10 days in advance. A Canadian flag denotes a Canadian artist. Chart history Counting Stars by OneRepublic reached number one after a thirty-four-week climb to the top, th...

Questa voce o sezione sull'argomento attori italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Il Mago Forest nel 2022 Mago Forest o Mr. Forest, pseudonimo di Michele Foresta (Nicosia, 22 febbraio 1961), è un comico, showman e conduttore televisivo italiano. Indice 1 Biografia 2 Vita privata 3 Film...

 

 

هذه الخريطة تبين حدود مملكة ميتاني الحوريه لبلاد مابين النهرين قبل تقسيم المنطقة لدويلات جديده كان واساشاتا (بالإنجليزية: Wasashatta أو Wasašatta)‏ ملكًا لمملكة ميتاني الحورية في بلاد الرافدين حوالي القرن الثالث عشر قبل الميلاد.[1] كان واساشاتا، مثل والده شاتوارا الأول، ملكا ت...

 

 

國際民主聯盟International Democrat Union国际民主联盟所屬政黨執政的國家分布(深蓝色)截至2021年2月 (2021-02)[update]簡稱IDU成立時間1983年總部 德国慕尼黑服务地区全球會員73官方語言英語主席 史蒂芬·哈珀(保守黨)副主席 Brian Loughnane(英语:Brian Loughnane)(自由黨)目標世界各地中間偏右至右派政黨和組織的聯盟網站idu.org 系列条目保守主义 分支 激情保守主义�...

第89憲兵旅第89憲兵旅臂章存在時期1966年–1971年1972年9月13日至今國家或地區 美国效忠於美國聯邦政府部門 美國陸軍功能憲兵規模旅級,約1000人直屬 第三軍參與戰役越南戰爭伊拉克戰爭持久自由行動指挥官現任指揮官John K. Curry 上校標識特色單位徽章(DUI) 第89憲兵旅(英語:89th Military Police Brigade)是隸屬於美國陸軍第三軍的旅級部隊。成立於越南戰爭期間,當時任務�...

 

 

CAN Guinée équatoriale 2015 Généralités Sport Football Organisateur(s) CAF Édition 30e Lieu(x) Guinée équatoriale Date du 17 janvier 2015au 8 février 2015 Participants 16 Épreuves 32 matchs Site(s) 4 stades Site web officiel cafonline.com Palmarès Tenant du titre Nigeria (3) Vainqueur Côte d'Ivoire (2) Finaliste Ghana Troisième RD Congo Buts 68 soit 2,125 par match Meilleur joueur Christian Atsu Meilleur(s) buteur(s) Javier Balboa Dieumerci Mbokani Thievy Bifouma André Ayew Ahm...

 

 

«Camposanto» redirige aquí. Para otras acepciones, véase Camposanto (desambiguación). Cementerio en Nurmijärvi (Finlandia). Cementerio en Santa Rosa de Tastil (Salta, Argentina), con tumbas que datan de los años 1850. Cementerio de Hietaniemi en Helsinki (Finlandia). Cementerio de la Santa Cruz, Gniezno (Polonia). Cementerio en Walker (Indiana, Estados Unidos). Cementerio marino y faro, Mahdia (Túnez). Cementerio de la salitrera Rica Aventura, María Elena (Chile). Cementerio, Tulcán...

Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze. La cardiologia è quella branca della medicina interna che si occupa dello studio, della diagnosi e della cura (farmacologica e/o invasiva) delle malattie cardiovascolari acquisite o congenite. Chi si occupa di tale branca della medicina, come medico specialista, viene chiamato cardiologo. La cardiologia è un...

 

 

Voce principale: UEFA Europa League 2012-2013. Questa voce raccoglie un approfondimento sulle gare dei turni preliminari dell'edizione 2012-2013 della UEFA Europa League. Indice 1 Primo turno 1.1 Sorteggio 1.2 Risultati 1.2.1 Andata 1.2.2 Ritorno 1.3 Tabella riassuntiva 2 Secondo turno 2.1 Sorteggio 2.2 Risultati 2.2.1 Andata 2.2.2 Ritorno 2.3 Tabella riassuntiva 3 Terzo turno 3.1 Sorteggio 3.2 Risultati 3.2.1 Andata 3.2.2 Ritorno 3.3 Tabella riassuntiva 4 Note 5 Collegamenti esterni Primo t...

 

 

منحنى تغير الانفعال مع الإجهاد-النقطة 1 هي مقاومة الشد القصوى للمادة مقاومة الشد (ملاحظة 1) هي مقياس لمقدار الإجهاد الذي تتعرض له المادة عند وصولها لنقطة الانهيار، التي عندها تتحطم أو تفقد تماسكها، أي هي أقصى إجهاد يمكن للمادة تحمله بدون أن تنهار . ومقاومة الشد هي خاصية غير م...

Son of King Frederick William I of Prussia (1722–1758) For the son of Wilhelm II, German Emperor, see Prince August Wilhelm of Prussia. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Prince Augustus William of Prussia – news · newspapers · books · scholar · JSTOR (March 2014) (Learn how and when to remove...

 

 

8th-century king of the Visigoths Achila IIKing of the VisigothsReign710/711 – 714PredecessorWittiza/RodericSuccessorArdoDiedc. 714Visigothic Kingdom Achila II (also spelled Agila,[a] Aquila, or Akhila; died c. 714) was the Visigothic king of Hispania from 710 or 711 until his death. The kingdom he ruled was restricted to the northeast of the old Hispanic kingdom on account of the Arabo-Berber invasions. Achila's reign is known solely from coins and regnal lists and is not mentioned...

 

 

Japanese comedian Roppa Furukawa古川ロッパBorn(1903-08-03)August 3, 1903Tokyo, JapanDiedJanuary 16, 1961(1961-01-16) (aged 57)NationalityJapaneseOccupation(s)Comedian, singer, film critic Roppa Furukawa (古川ロッパ, also 緑波, Furukawa Roppa, 3 August 1903 – 16 January 1961) was a Japanese comedian. Career Furukawa was born the sixth son of Baron Katō Terumaro (1863–1925), making him the grandson of Baron Katō Hiroyuki.[1] The family custom, however, w...

Law stating that newer strata stack above older ones For other uses, see Superposition (disambiguation). This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2015) (Learn how and when to remove this message) Layer upon layer of rocks on north shore of Isfjord, Svalbard, Norway. Since there is no overturning, the rock at the...

 

 

Questa voce o sezione sull'argomento gruppi musicali non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. A questa voce o sezione va aggiunto il template sinottico {{Artista musicale}} Puoi aggiungere e riempire il template secondo le istruzioni e poi rimuovere questo avviso. Se non sei in grado di riempirlo in buona parte, non fare nulla; non inserire template...