Lerch transcendent
Special mathematical function
In mathematics , the Lerch transcendent , is a special function that generalizes the Hurwitz zeta function and the polylogarithm . It is named after Czech mathematician Mathias Lerch , who published a paper about a similar function in 1887.[ 1] The Lerch transcendent, is given by:
Φ Φ -->
(
z
,
s
,
α α -->
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
z
n
(
n
+
α α -->
)
s
{\displaystyle \Phi (z,s,\alpha )=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+\alpha )^{s}}}}
.
It only converges for any real number
α α -->
>
0
{\displaystyle \alpha >0}
, where
|
z
|
<
1
{\displaystyle |z|<1}
, or
R
(
s
)
>
1
{\displaystyle {\mathfrak {R}}(s)>1}
, and
|
z
|
=
1
{\displaystyle |z|=1}
.[ 2]
Special cases
The Lerch transcendent is related to and generalizes various special functions.
The Lerch zeta function is given by:
L
(
λ λ -->
,
s
,
α α -->
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
e
2
π π -->
i
λ λ -->
n
(
n
+
α α -->
)
s
=
Φ Φ -->
(
e
2
π π -->
i
λ λ -->
,
s
,
α α -->
)
{\displaystyle L(\lambda ,s,\alpha )=\sum _{n=0}^{\infty }{\frac {e^{2\pi i\lambda n}}{(n+\alpha )^{s}}}=\Phi (e^{2\pi i\lambda },s,\alpha )}
The Hurwitz zeta function is the special case[ 3]
ζ ζ -->
(
s
,
α α -->
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
1
(
n
+
α α -->
)
s
=
Φ Φ -->
(
1
,
s
,
α α -->
)
{\displaystyle \zeta (s,\alpha )=\sum _{n=0}^{\infty }{\frac {1}{(n+\alpha )^{s}}}=\Phi (1,s,\alpha )}
The polylogarithm is another special case:[ 3]
Li
s
(
z
)
=
∑ ∑ -->
n
=
1
∞ ∞ -->
z
n
n
s
=
z
Φ Φ -->
(
z
,
s
,
1
)
{\displaystyle {\textrm {Li}}_{s}(z)=\sum _{n=1}^{\infty }{\frac {z^{n}}{n^{s}}}=z\Phi (z,s,1)}
The Riemann zeta function is a special case of both of the above:[ 3]
ζ ζ -->
(
s
)
=
∑ ∑ -->
n
=
1
∞ ∞ -->
1
n
s
=
Φ Φ -->
(
1
,
s
,
1
)
{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\Phi (1,s,1)}
The Dirichlet eta function :[ 3]
η η -->
(
s
)
=
∑ ∑ -->
n
=
1
∞ ∞ -->
(
− − -->
1
)
n
− − -->
1
n
s
=
Φ Φ -->
(
− − -->
1
,
s
,
1
)
{\displaystyle \eta (s)=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}}=\Phi (-1,s,1)}
The Dirichlet beta function :[ 3]
β β -->
(
s
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
(
− − -->
1
)
k
(
2
k
+
1
)
s
=
2
− − -->
s
Φ Φ -->
(
− − -->
1
,
s
,
1
2
)
{\displaystyle \beta (s)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)^{s}}}=2^{-s}\Phi (-1,s,{\tfrac {1}{2}})}
The Legendre chi function :[ 3]
χ χ -->
s
(
z
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
z
2
k
+
1
(
2
k
+
1
)
s
=
z
2
s
Φ Φ -->
(
z
2
,
s
,
1
2
)
{\displaystyle \chi _{s}(z)=\sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)^{s}}}={\frac {z}{2^{s}}}\Phi (z^{2},s,{\tfrac {1}{2}})}
The inverse tangent integral :[ 4]
Ti
s
(
z
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
(
− − -->
1
)
k
z
2
k
+
1
(
2
k
+
1
)
s
=
z
2
s
Φ Φ -->
(
− − -->
z
2
,
s
,
1
2
)
{\displaystyle {\textrm {Ti}}_{s}(z)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)^{s}}}={\frac {z}{2^{s}}}\Phi (-z^{2},s,{\tfrac {1}{2}})}
The polygamma functions for positive integers n :[ 5] [ 6]
ψ ψ -->
(
n
)
(
α α -->
)
=
(
− − -->
1
)
n
+
1
n
!
Φ Φ -->
(
1
,
n
+
1
,
α α -->
)
{\displaystyle \psi ^{(n)}(\alpha )=(-1)^{n+1}n!\Phi (1,n+1,\alpha )}
The Clausen function :[ 7]
Cl
2
(
z
)
=
i
e
− − -->
i
z
2
Φ Φ -->
(
e
− − -->
i
z
,
2
,
1
)
− − -->
i
e
i
z
2
Φ Φ -->
(
e
i
z
,
2
,
1
)
{\displaystyle {\text{Cl}}_{2}(z)={\frac {ie^{-iz}}{2}}\Phi (e^{-iz},2,1)-{\frac {ie^{iz}}{2}}\Phi (e^{iz},2,1)}
Integral representations
The Lerch transcendent has an integral representation:
Φ Φ -->
(
z
,
s
,
a
)
=
1
Γ Γ -->
(
s
)
∫ ∫ -->
0
∞ ∞ -->
t
s
− − -->
1
e
− − -->
a
t
1
− − -->
z
e
− − -->
t
d
t
{\displaystyle \Phi (z,s,a)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}}{1-ze^{-t}}}\,dt}
The proof is based on using the integral definition of the Gamma function to write
Φ Φ -->
(
z
,
s
,
a
)
Γ Γ -->
(
s
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
z
n
(
n
+
a
)
s
∫ ∫ -->
0
∞ ∞ -->
x
s
e
− − -->
x
d
x
x
=
∑ ∑ -->
n
=
0
∞ ∞ -->
∫ ∫ -->
0
∞ ∞ -->
t
s
z
n
e
− − -->
(
n
+
a
)
t
d
t
t
{\displaystyle \Phi (z,s,a)\Gamma (s)=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+a)^{s}}}\int _{0}^{\infty }x^{s}e^{-x}{\frac {dx}{x}}=\sum _{n=0}^{\infty }\int _{0}^{\infty }t^{s}z^{n}e^{-(n+a)t}{\frac {dt}{t}}}
and then interchanging the sum and integral. The resulting integral representation converges for
z
∈ ∈ -->
C
∖ ∖ -->
[
1
,
∞ ∞ -->
)
,
{\displaystyle z\in \mathbb {C} \setminus [1,\infty ),}
Re(s ) > 0, and Re(a ) > 0. This analytically continues
Φ Φ -->
(
z
,
s
,
a
)
{\displaystyle \Phi (z,s,a)}
to z outside the unit disk. The integral formula also holds if z = 1, Re(s ) > 1, and Re(a ) > 0; see Hurwitz zeta function .[ 8] [ 9]
A contour integral representation is given by
Φ Φ -->
(
z
,
s
,
a
)
=
− − -->
Γ Γ -->
(
1
− − -->
s
)
2
π π -->
i
∫ ∫ -->
C
(
− − -->
t
)
s
− − -->
1
e
− − -->
a
t
1
− − -->
z
e
− − -->
t
d
t
{\displaystyle \Phi (z,s,a)=-{\frac {\Gamma (1-s)}{2\pi i}}\int _{C}{\frac {(-t)^{s-1}e^{-at}}{1-ze^{-t}}}\,dt}
where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points
t
=
log
-->
(
z
)
+
2
k
π π -->
i
{\displaystyle t=\log(z)+2k\pi i}
(for integer k ) which are poles of the integrand. The integral assumes Re(a ) > 0.[ 10]
Other integral representations
A Hermite-like integral representation is given by
Φ Φ -->
(
z
,
s
,
a
)
=
1
2
a
s
+
∫ ∫ -->
0
∞ ∞ -->
z
t
(
a
+
t
)
s
d
t
+
2
a
s
− − -->
1
∫ ∫ -->
0
∞ ∞ -->
sin
-->
(
s
arctan
-->
(
t
)
− − -->
t
a
log
-->
(
z
)
)
(
1
+
t
2
)
s
/
2
(
e
2
π π -->
a
t
− − -->
1
)
d
t
{\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {z^{t}}{(a+t)^{s}}}\,dt+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt}
for
ℜ ℜ -->
(
a
)
>
0
∧ ∧ -->
|
z
|
<
1
{\displaystyle \Re (a)>0\wedge |z|<1}
and
Φ Φ -->
(
z
,
s
,
a
)
=
1
2
a
s
+
log
s
− − -->
1
-->
(
1
/
z
)
z
a
Γ Γ -->
(
1
− − -->
s
,
a
log
-->
(
1
/
z
)
)
+
2
a
s
− − -->
1
∫ ∫ -->
0
∞ ∞ -->
sin
-->
(
s
arctan
-->
(
t
)
− − -->
t
a
log
-->
(
z
)
)
(
1
+
t
2
)
s
/
2
(
e
2
π π -->
a
t
− − -->
1
)
d
t
{\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {\log ^{s-1}(1/z)}{z^{a}}}\Gamma (1-s,a\log(1/z))+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt}
for
ℜ ℜ -->
(
a
)
>
0.
{\displaystyle \Re (a)>0.}
Similar representations include
Φ Φ -->
(
z
,
s
,
a
)
=
1
2
a
s
+
∫ ∫ -->
0
∞ ∞ -->
cos
-->
(
t
log
-->
z
)
sin
-->
(
s
arctan
-->
t
a
)
− − -->
sin
-->
(
t
log
-->
z
)
cos
-->
(
s
arctan
-->
t
a
)
(
a
2
+
t
2
)
s
2
tanh
-->
π π -->
t
d
t
,
{\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {\cos(t\log z)\sin {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}-\sin(t\log z)\cos {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}}{{\big (}a^{2}+t^{2}{\big )}^{\frac {s}{2}}\tanh \pi t}}\,dt,}
and
Φ Φ -->
(
− − -->
z
,
s
,
a
)
=
1
2
a
s
+
∫ ∫ -->
0
∞ ∞ -->
cos
-->
(
t
log
-->
z
)
sin
-->
(
s
arctan
-->
t
a
)
− − -->
sin
-->
(
t
log
-->
z
)
cos
-->
(
s
arctan
-->
t
a
)
(
a
2
+
t
2
)
s
2
sinh
-->
π π -->
t
d
t
,
{\displaystyle \Phi (-z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {\cos(t\log z)\sin {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}-\sin(t\log z)\cos {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}}{{\big (}a^{2}+t^{2}{\big )}^{\frac {s}{2}}\sinh \pi t}}\,dt,}
holding for positive z (and more generally wherever the integrals converge). Furthermore,
Φ Φ -->
(
e
i
φ φ -->
,
s
,
a
)
=
L
(
φ φ -->
2
π π -->
,
s
,
a
)
=
1
a
s
+
1
2
Γ Γ -->
(
s
)
∫ ∫ -->
0
∞ ∞ -->
t
s
− − -->
1
e
− − -->
a
t
(
e
i
φ φ -->
− − -->
e
− − -->
t
)
cosh
-->
t
− − -->
cos
-->
φ φ -->
d
t
,
{\displaystyle \Phi (e^{i\varphi },s,a)=L{\big (}{\tfrac {\varphi }{2\pi }},s,a{\big )}={\frac {1}{a^{s}}}+{\frac {1}{2\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}{\big (}e^{i\varphi }-e^{-t}{\big )}}{\cosh {t}-\cos {\varphi }}}\,dt,}
The last formula is also known as Lipschitz formula .
Identities
For λ rational, the summand is a root of unity , and thus
L
(
λ λ -->
,
s
,
α α -->
)
{\displaystyle L(\lambda ,s,\alpha )}
may be expressed as a finite sum over the Hurwitz zeta function. Suppose
λ λ -->
=
p
q
{\textstyle \lambda ={\frac {p}{q}}}
with
p
,
q
∈ ∈ -->
Z
{\displaystyle p,q\in \mathbb {Z} }
and
q
>
0
{\displaystyle q>0}
. Then
z
=
ω ω -->
=
e
2
π π -->
i
p
q
{\displaystyle z=\omega =e^{2\pi i{\frac {p}{q}}}}
and
ω ω -->
q
=
1
{\displaystyle \omega ^{q}=1}
.
Φ Φ -->
(
ω ω -->
,
s
,
α α -->
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
ω ω -->
n
(
n
+
α α -->
)
s
=
∑ ∑ -->
m
=
0
q
− − -->
1
∑ ∑ -->
n
=
0
∞ ∞ -->
ω ω -->
q
n
+
m
(
q
n
+
m
+
α α -->
)
s
=
∑ ∑ -->
m
=
0
q
− − -->
1
ω ω -->
m
q
− − -->
s
ζ ζ -->
(
s
,
m
+
α α -->
q
)
{\displaystyle \Phi (\omega ,s,\alpha )=\sum _{n=0}^{\infty }{\frac {\omega ^{n}}{(n+\alpha )^{s}}}=\sum _{m=0}^{q-1}\sum _{n=0}^{\infty }{\frac {\omega ^{qn+m}}{(qn+m+\alpha )^{s}}}=\sum _{m=0}^{q-1}\omega ^{m}q^{-s}\zeta \left(s,{\frac {m+\alpha }{q}}\right)}
Various identities include:
Φ Φ -->
(
z
,
s
,
a
)
=
z
n
Φ Φ -->
(
z
,
s
,
a
+
n
)
+
∑ ∑ -->
k
=
0
n
− − -->
1
z
k
(
k
+
a
)
s
{\displaystyle \Phi (z,s,a)=z^{n}\Phi (z,s,a+n)+\sum _{k=0}^{n-1}{\frac {z^{k}}{(k+a)^{s}}}}
and
Φ Φ -->
(
z
,
s
− − -->
1
,
a
)
=
(
a
+
z
∂ ∂ -->
∂ ∂ -->
z
)
Φ Φ -->
(
z
,
s
,
a
)
{\displaystyle \Phi (z,s-1,a)=\left(a+z{\frac {\partial }{\partial z}}\right)\Phi (z,s,a)}
and
Φ Φ -->
(
z
,
s
+
1
,
a
)
=
− − -->
1
s
∂ ∂ -->
∂ ∂ -->
a
Φ Φ -->
(
z
,
s
,
a
)
.
{\displaystyle \Phi (z,s+1,a)=-{\frac {1}{s}}{\frac {\partial }{\partial a}}\Phi (z,s,a).}
Series representations
A series representation for the Lerch transcendent is given by
Φ Φ -->
(
z
,
s
,
q
)
=
1
1
− − -->
z
∑ ∑ -->
n
=
0
∞ ∞ -->
(
− − -->
z
1
− − -->
z
)
n
∑ ∑ -->
k
=
0
n
(
− − -->
1
)
k
(
n
k
)
(
q
+
k
)
− − -->
s
.
{\displaystyle \Phi (z,s,q)={\frac {1}{1-z}}\sum _{n=0}^{\infty }\left({\frac {-z}{1-z}}\right)^{n}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(q+k)^{-s}.}
(Note that
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
is a binomial coefficient .)
The series is valid for all s , and for complex z with Re(z )<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[ 11]
A Taylor series in the first parameter was given by Arthur Erdélyi . It may be written as the following series, which is valid for[ 12]
|
log
-->
(
z
)
|
<
2
π π -->
;
s
≠ ≠ -->
1
,
2
,
3
,
… … -->
;
a
≠ ≠ -->
0
,
− − -->
1
,
− − -->
2
,
… … -->
{\displaystyle \left|\log(z)\right|<2\pi ;s\neq 1,2,3,\dots ;a\neq 0,-1,-2,\dots }
Φ Φ -->
(
z
,
s
,
a
)
=
z
− − -->
a
[
Γ Γ -->
(
1
− − -->
s
)
(
− − -->
log
-->
(
z
)
)
s
− − -->
1
+
∑ ∑ -->
k
=
0
∞ ∞ -->
ζ ζ -->
(
s
− − -->
k
,
a
)
log
k
-->
(
z
)
k
!
]
{\displaystyle \Phi (z,s,a)=z^{-a}\left[\Gamma (1-s)\left(-\log(z)\right)^{s-1}+\sum _{k=0}^{\infty }\zeta (s-k,a){\frac {\log ^{k}(z)}{k!}}\right]}
If n is a positive integer, then
Φ Φ -->
(
z
,
n
,
a
)
=
z
− − -->
a
{
∑ ∑ -->
k
=
0
k
≠ ≠ -->
n
− − -->
1
∞ ∞ -->
ζ ζ -->
(
n
− − -->
k
,
a
)
log
k
-->
(
z
)
k
!
+
[
ψ ψ -->
(
n
)
− − -->
ψ ψ -->
(
a
)
− − -->
log
-->
(
− − -->
log
-->
(
z
)
)
]
log
n
− − -->
1
-->
(
z
)
(
n
− − -->
1
)
!
}
,
{\displaystyle \Phi (z,n,a)=z^{-a}\left\{\sum _{{k=0} \atop k\neq n-1}^{\infty }\zeta (n-k,a){\frac {\log ^{k}(z)}{k!}}+\left[\psi (n)-\psi (a)-\log(-\log(z))\right]{\frac {\log ^{n-1}(z)}{(n-1)!}}\right\},}
where
ψ ψ -->
(
n
)
{\displaystyle \psi (n)}
is the digamma function .
A Taylor series in the third variable is given by
Φ Φ -->
(
z
,
s
,
a
+
x
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
Φ Φ -->
(
z
,
s
+
k
,
a
)
(
s
)
k
(
− − -->
x
)
k
k
!
;
|
x
|
<
ℜ ℜ -->
(
a
)
,
{\displaystyle \Phi (z,s,a+x)=\sum _{k=0}^{\infty }\Phi (z,s+k,a)(s)_{k}{\frac {(-x)^{k}}{k!}};|x|<\Re (a),}
where
(
s
)
k
{\displaystyle (s)_{k}}
is the Pochhammer symbol .
Series at a = −n is given by
Φ Φ -->
(
z
,
s
,
a
)
=
∑ ∑ -->
k
=
0
n
z
k
(
a
+
k
)
s
+
z
n
∑ ∑ -->
m
=
0
∞ ∞ -->
(
1
− − -->
m
− − -->
s
)
m
Li
s
+
m
-->
(
z
)
(
a
+
n
)
m
m
!
;
a
→ → -->
− − -->
n
{\displaystyle \Phi (z,s,a)=\sum _{k=0}^{n}{\frac {z^{k}}{(a+k)^{s}}}+z^{n}\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {(a+n)^{m}}{m!}};\ a\rightarrow -n}
A special case for n = 0 has the following series
Φ Φ -->
(
z
,
s
,
a
)
=
1
a
s
+
∑ ∑ -->
m
=
0
∞ ∞ -->
(
1
− − -->
m
− − -->
s
)
m
Li
s
+
m
-->
(
z
)
a
m
m
!
;
|
a
|
<
1
,
{\displaystyle \Phi (z,s,a)={\frac {1}{a^{s}}}+\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {a^{m}}{m!}};|a|<1,}
where
Li
s
-->
(
z
)
{\displaystyle \operatorname {Li} _{s}(z)}
is the polylogarithm .
An asymptotic series for
s
→ → -->
− − -->
∞ ∞ -->
{\displaystyle s\rightarrow -\infty }
Φ Φ -->
(
z
,
s
,
a
)
=
z
− − -->
a
Γ Γ -->
(
1
− − -->
s
)
∑ ∑ -->
k
=
− − -->
∞ ∞ -->
∞ ∞ -->
[
2
k
π π -->
i
− − -->
log
-->
(
z
)
]
s
− − -->
1
e
2
k
π π -->
a
i
{\displaystyle \Phi (z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[2k\pi i-\log(z)]^{s-1}e^{2k\pi ai}}
for
|
a
|
<
1
;
ℜ ℜ -->
(
s
)
<
0
;
z
∉ ∉ -->
(
− − -->
∞ ∞ -->
,
0
)
{\displaystyle |a|<1;\Re (s)<0;z\notin (-\infty ,0)}
and
Φ Φ -->
(
− − -->
z
,
s
,
a
)
=
z
− − -->
a
Γ Γ -->
(
1
− − -->
s
)
∑ ∑ -->
k
=
− − -->
∞ ∞ -->
∞ ∞ -->
[
(
2
k
+
1
)
π π -->
i
− − -->
log
-->
(
z
)
]
s
− − -->
1
e
(
2
k
+
1
)
π π -->
a
i
{\displaystyle \Phi (-z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}}
for
|
a
|
<
1
;
ℜ ℜ -->
(
s
)
<
0
;
z
∉ ∉ -->
(
0
,
∞ ∞ -->
)
.
{\displaystyle |a|<1;\Re (s)<0;z\notin (0,\infty ).}
An asymptotic series in the incomplete gamma function
Φ Φ -->
(
z
,
s
,
a
)
=
1
2
a
s
+
1
z
a
∑ ∑ -->
k
=
1
∞ ∞ -->
e
− − -->
2
π π -->
i
(
k
− − -->
1
)
a
Γ Γ -->
(
1
− − -->
s
,
a
(
− − -->
2
π π -->
i
(
k
− − -->
1
)
− − -->
log
-->
(
z
)
)
)
(
− − -->
2
π π -->
i
(
k
− − -->
1
)
− − -->
log
-->
(
z
)
)
1
− − -->
s
+
e
2
π π -->
i
k
a
Γ Γ -->
(
1
− − -->
s
,
a
(
2
π π -->
i
k
− − -->
log
-->
(
z
)
)
)
(
2
π π -->
i
k
− − -->
log
-->
(
z
)
)
1
− − -->
s
{\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {1}{z^{a}}}\sum _{k=1}^{\infty }{\frac {e^{-2\pi i(k-1)a}\Gamma (1-s,a(-2\pi i(k-1)-\log(z)))}{(-2\pi i(k-1)-\log(z))^{1-s}}}+{\frac {e^{2\pi ika}\Gamma (1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}}}}
for
|
a
|
<
1
;
ℜ ℜ -->
(
s
)
<
0.
{\displaystyle |a|<1;\Re (s)<0.}
The representation as a generalized hypergeometric function is[ 13]
Φ Φ -->
(
z
,
s
,
α α -->
)
=
1
α α -->
s
s
+
1
F
s
(
1
,
α α -->
,
α α -->
,
α α -->
,
⋯ ⋯ -->
1
+
α α -->
,
1
+
α α -->
,
1
+
α α -->
,
⋯ ⋯ -->
∣ ∣ -->
z
)
.
{\displaystyle \Phi (z,s,\alpha )={\frac {1}{\alpha ^{s}}}{}_{s+1}F_{s}\left({\begin{array}{c}1,\alpha ,\alpha ,\alpha ,\cdots \\1+\alpha ,1+\alpha ,1+\alpha ,\cdots \\\end{array}}\mid z\right).}
Asymptotic expansion
The polylogarithm function
L
i
n
(
z
)
{\displaystyle \mathrm {Li} _{n}(z)}
is defined as
L
i
0
(
z
)
=
z
1
− − -->
z
,
L
i
− − -->
n
(
z
)
=
z
d
d
z
L
i
1
− − -->
n
(
z
)
.
{\displaystyle \mathrm {Li} _{0}(z)={\frac {z}{1-z}},\qquad \mathrm {Li} _{-n}(z)=z{\frac {d}{dz}}\mathrm {Li} _{1-n}(z).}
Let
Ω Ω -->
a
≡ ≡ -->
{
C
∖ ∖ -->
[
1
,
∞ ∞ -->
)
if
ℜ ℜ -->
a
>
0
,
z
∈ ∈ -->
C
,
|
z
|
<
1
if
ℜ ℜ -->
a
≤ ≤ -->
0.
{\displaystyle \Omega _{a}\equiv {\begin{cases}\mathbb {C} \setminus [1,\infty )&{\text{if }}\Re a>0,\\{z\in \mathbb {C} ,|z|<1}&{\text{if }}\Re a\leq 0.\end{cases}}}
For
|
A
r
g
(
a
)
|
<
π π -->
,
s
∈ ∈ -->
C
{\displaystyle |\mathrm {Arg} (a)|<\pi ,s\in \mathbb {C} }
and
z
∈ ∈ -->
Ω Ω -->
a
{\displaystyle z\in \Omega _{a}}
, an asymptotic expansion of
Φ Φ -->
(
z
,
s
,
a
)
{\displaystyle \Phi (z,s,a)}
for large
a
{\displaystyle a}
and fixed
s
{\displaystyle s}
and
z
{\displaystyle z}
is given by
Φ Φ -->
(
z
,
s
,
a
)
=
1
1
− − -->
z
1
a
s
+
∑ ∑ -->
n
=
1
N
− − -->
1
(
− − -->
1
)
n
L
i
− − -->
n
(
z
)
n
!
(
s
)
n
a
n
+
s
+
O
(
a
− − -->
N
− − -->
s
)
{\displaystyle \Phi (z,s,a)={\frac {1}{1-z}}{\frac {1}{a^{s}}}+\sum _{n=1}^{N-1}{\frac {(-1)^{n}\mathrm {Li} _{-n}(z)}{n!}}{\frac {(s)_{n}}{a^{n+s}}}+O(a^{-N-s})}
for
N
∈ ∈ -->
N
{\displaystyle N\in \mathbb {N} }
, where
(
s
)
n
=
s
(
s
+
1
)
⋯ ⋯ -->
(
s
+
n
− − -->
1
)
{\displaystyle (s)_{n}=s(s+1)\cdots (s+n-1)}
is the Pochhammer symbol .[ 14]
Let
f
(
z
,
x
,
a
)
≡ ≡ -->
1
− − -->
(
z
e
− − -->
x
)
1
− − -->
a
1
− − -->
z
e
− − -->
x
.
{\displaystyle f(z,x,a)\equiv {\frac {1-(ze^{-x})^{1-a}}{1-ze^{-x}}}.}
Let
C
n
(
z
,
a
)
{\displaystyle C_{n}(z,a)}
be its Taylor coefficients at
x
=
0
{\displaystyle x=0}
. Then for fixed
N
∈ ∈ -->
N
,
ℜ ℜ -->
a
>
1
{\displaystyle N\in \mathbb {N} ,\Re a>1}
and
ℜ ℜ -->
s
>
0
{\displaystyle \Re s>0}
,
Φ Φ -->
(
z
,
s
,
a
)
− − -->
L
i
s
(
z
)
z
a
=
∑ ∑ -->
n
=
0
N
− − -->
1
C
n
(
z
,
a
)
(
s
)
n
a
n
+
s
+
O
(
(
ℜ ℜ -->
a
)
1
− − -->
N
− − -->
s
+
a
z
− − -->
ℜ ℜ -->
a
)
,
{\displaystyle \Phi (z,s,a)-{\frac {\mathrm {Li} _{s}(z)}{z^{a}}}=\sum _{n=0}^{N-1}C_{n}(z,a){\frac {(s)_{n}}{a^{n+s}}}+O\left((\Re a)^{1-N-s}+az^{-\Re a}\right),}
as
ℜ ℜ -->
a
→ → -->
∞ ∞ -->
{\displaystyle \Re a\to \infty }
.[ 15]
Software
The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica , and as lerchphi in mpmath and SymPy .
References
^ Lerch, Mathias (1887), "Note sur la fonction
K
(
w
,
x
,
s
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
e
2
k
π π -->
i
x
(
w
+
k
)
s
{\displaystyle \scriptstyle {\mathfrak {K}}(w,x,s)=\sum _{k=0}^{\infty }{e^{2k\pi ix} \over (w+k)^{s}}}
" , Acta Mathematica (in French), 11 (1– 4): 19– 24, doi :10.1007/BF02612318 , JFM 19.0438.01 , MR 1554747 , S2CID 121885446
^ https://arxiv.org/pdf/math/0506319.pdf
^ a b c d e f Guillera & Sondow 2008 , p. 248–249
^ Weisstein, Eric W. "Inverse Tangent Integral" . mathworld.wolfram.com . Retrieved 2024-10-13 .
^ The polygamma function has the series representation
ψ ψ -->
(
m
)
(
z
)
=
(
− − -->
1
)
m
+
1
m
!
∑ ∑ -->
k
=
0
∞ ∞ -->
1
(
z
+
k
)
m
+
1
{\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\,m!\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{m+1}}}}
which holds for integer values of m > 0 and any complex z not equal to a negative integer.
^ Weisstein, Eric W. "Polygamma Function" . mathworld.wolfram.com . Retrieved 2024-10-14 .
^ Weisstein, Eric W. "Clausen Function" . mathworld.wolfram.com . Retrieved 2024-10-14 .
^ Bateman & Erdélyi 1953 , p. 27
^ Guillera & Sondow 2008 , Lemma 2.1 and 2.2
^ Bateman & Erdélyi 1953 , p. 28
^ "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function" . 27 April 2020. Retrieved 28 April 2020 .
^ B. R. Johnson (1974). "Generalized Lerch zeta function" . Pacific J. Math . 53 (1): 189– 193. doi :10.2140/pjm.1974.53.189 .
^ Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A . 21 (9): 1983– 1998. Bibcode :1988JPhA...21.1983G . doi :10.1088/0305-4470/21/9/015 .
^ Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function" . Journal of Mathematical Analysis and Applications . 298 (1): 210– 224. doi :10.1016/j.jmaa.2004.05.040 .
^ Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions . 30 (10): 844– 855. arXiv :1806.01122 . doi :10.1080/10652469.2019.1627530 . S2CID 119619877 .
Apostol, T. M. (2010), "Lerch's Transcendent" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 ..
Bateman, H. ; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I (PDF) , New York: McGraw-Hill . (See § 1.11, "The function Ψ(z ,s ,v )", p. 27)
Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) [October 2014]. "9.55.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press. ISBN 978-0-12-384933-5 . LCCN 2014010276 .
Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal , 16 (3): 247– 270, arXiv :math.NT/0506319 , doi :10.1007/s11139-007-9102-0 , MR 2429900 , S2CID 119131640 . (Includes various basic identities in the introduction.)
Jackson, M. (1950), "On Lerch's transcendent and the basic bilateral hypergeometric series 2 ψ 2 ", J. London Math. Soc. , 25 (3): 189– 196, doi :10.1112/jlms/s1-25.3.189 , MR 0036882 .
Johansson, F.; Blagouchine, Ia. (2019), "Computing Stieltjes constants using complex integration", Mathematics of Computation , 88 (318): 1829– 1850, arXiv :1804.01679 , doi :10.1090/mcom/3401 , MR 3925487 , S2CID 4619883 .
Laurinčikas, Antanas; Garunkštis, Ramūnas (2002), The Lerch zeta-function , Dordrecht: Kluwer Academic Publishers, ISBN 978-1-4020-1014-9 , MR 1979048 .
External links
Aksenov, Sergej V.; Jentschura, Ulrich D. (2002), C and Mathematica Programs for Calculation of Lerch's Transcendent .
Ramunas Garunkstis, Home Page (2005) (Provides numerous references and preprints.)
Garunkstis, Ramunas (2004). "Approximation of the Lerch Zeta Function" (PDF) . Lithuanian Mathematical Journal . 44 (2): 140– 144. doi :10.1023/B:LIMA.0000033779.41365.a5 . S2CID 123059665 .
Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2015). "A generalization of Bochner's formula" . Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2004). "A generalization of Bochner's formula" . Hardy-Ramanujan Journal . 27 . doi :10.46298/hrj.2004.150 .
Weisstein, Eric W. "Lerch Transcendent" . MathWorld .
Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Lerch's Transcendent" , NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .