Plücker embedding

In mathematics, the Plücker map embeds the Grassmannian , whose elements are k-dimensional subspaces of an n-dimensional vector space V, either real or complex, in a projective space, thereby realizing it as a projective algebraic variety. More precisely, the Plücker map embeds into the projectivization of the -th exterior power of . The image is algebraic, consisting of the intersection of a number of quadrics defined by the § Plücker relations (see below).

The Plücker embedding was first defined by Julius Plücker in the case as a way of describing the lines in three-dimensional space (which, as projective lines in real projective space, correspond to two-dimensional subspaces of a four-dimensional vector space). The image of that embedding is the Klein quadric in RP5.

Hermann Grassmann generalized Plücker's embedding to arbitrary k and n. The homogeneous coordinates of the image of the Grassmannian under the Plücker embedding, relative to the basis in the exterior space corresponding to the natural basis in (where is the base field) are called Plücker coordinates.

Definition

Denoting by the -dimensional vector space over the field , and by the Grassmannian of -dimensional subspaces of , the Plücker embedding is the map ι defined by

where is a basis for the element and is the projective equivalence class of the element of the th exterior power of .

This is an embedding of the Grassmannian into the projectivization . The image can be completely characterized as the intersection of a number of quadrics, the Plücker quadrics (see below), which are expressed by homogeneous quadratic relations on the Plücker coordinates (see below) that derive from linear algebra.

The bracket ring appears as the ring of polynomial functions on .[1]

Plücker relations

The image under the Plücker embedding satisfies a simple set of homogeneous quadratic relations, usually called the Plücker relations, or Grassmann–Plücker relations, defining the intersection of a number of quadrics in . This shows that the Grassmannian embeds as an algebraic subvariety of and gives another method of constructing the Grassmannian. To state the Grassmann–Plücker relations, let be the -dimensional subspace spanned by the basis represented by column vectors . Let be the matrix of homogeneous coordinates, whose columns are . Then the equivalence class of all such homogeneous coordinates matrices related to each other by right multiplication by an invertible matrix may be identified with the element . For any ordered sequence of integers, let be the determinant of the matrix whose rows are the rows of . Then, up to projectivization, are the Plücker coordinates of the element whose homogeneous coordinates are . They are the linear coordinates of the image of under the Plücker map, relative to the standard basis in the exterior space . Changing the basis defining the homogeneous coordinate matrix just changes the Plücker coordinates by a nonzero scaling factor equal to the determinant of the change of basis matrix , and hence just the representative of the projective equivalence class in .

For any two ordered sequences:

of positive integers , the following homogeneous equations are valid, and determine the image of under the Plücker map:[2]

(1)

where denotes the sequence with the term omitted. These are generally referred to as the Plücker relations.


When dim(V) = 4 and k = 2, we get , the simplest Grassmannian which is not a projective space, and the above reduces to a single equation. Denoting the coordinates of by

the image of under the Plücker map is defined by the single equation

In general, many more equations are needed to define the image of the Plücker embedding, as in (1), but these are not, in general, algebraically independent. The maximal number of algebraically independent relations (on Zariski open sets) is given by the difference of dimension between and , which is

References

  1. ^ Björner, Anders; Las Vergnas, Michel; Sturmfels, Bernd; White, Neil; Ziegler, Günter (1999), Oriented matroids, Encyclopedia of Mathematics and Its Applications, vol. 46 (2nd ed.), Cambridge University Press, p. 79, doi:10.1017/CBO9780511586507, ISBN 0-521-77750-X, Zbl 0944.52006
  2. ^ Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley Classics Library (2nd ed.), New York: John Wiley & Sons, p. 211, ISBN 0-471-05059-8, MR 1288523, Zbl 0836.14001

Further reading

Read other articles:

Universitas ParamadinaLogo Universitas ParamadinaMotoLeadership, Entrepreneurship, EthicsJenisPerguruan Tinggi SwastaDidirikan10 Januari 1998RektorProf. Didik Junaidi Rachbini, M.Sc, Ph.D.LokasiUniversitas Paramadina: Jl. Gatot Subroto Kav. 97, Mampang, Jakarta Selatan, DKI Jakarta 12790. Paramadina Graduate School: The Energy 22nd Floor, SCBD Lot. 11A, Jl. Jend. Sudirman Kav. 52-53, Senayan, Kebayoran Baru, Jakarta Selatan, DKI Jakarta 12190.Situs webwww.paramadina.ac.id Universitas Paramadi...

 

 

—— Permukiman di Uni Emirat Arab —— Al Murarالمرر Negara Uni Emirat Arab Emirat Dubai Kota Dubai Jumlah daerah 117 Statistik permukiman Luas 0.41 km² Jumlah penduduk 19,831[1] (2000) Kepadatan penduduk 48,368/km² Permukiman sekitarnya Naif, Ayal Nasir, Al Baraha Koordinat 25°27′33″N 55°31′19″E / 25.45917°N 55.52194°E / 25.45917; 55.52194 Al Murar (Arab: المررcode: ar is deprecated ) merupakan sebuah wilayah di Du...

 

 

AjigePangeran Ying Ranking PertamaMasa pemerintahan1644 - 1651(7 tahun)PendahuluTidak ada (gelar dibuat)PenerusTidak adaInformasi pribadiKelahiran(1605-08-28)28 Agustus 1605Kematian28 November 1651(1651-11-28) (umur 46)WangsaIstana Aisin GioroNama lengkapAisin Gioro Ajige 愛新覺羅·阿濟格AyahNurhaciIbuNyonya AbahaiAnakSeorang putri Ajige (Manchu: ; Hanzi: 阿濟格) (28 Agustus 1605   – 28 November 1651) (ditulis kecil, kecil di dalam Manchu) merupakan seorang pangeran ...

Wine originating from Virginia VirginiaWine regionOfficial nameCommonwealth of VirginiaTypeU.S. stateYear established1788CountryUSASub-regionsMiddleburg AVA, Monticello AVA, North Fork of Roanoke AVA, Northern Neck George Washington Birthplace AVA, Rocky Knob AVA, Shenandoah Valley AVA, Virginia's Eastern Shore AVAClimate regionHumid subtropical with maritime and continental in highland areasTotal area42,774 square miles (110,784 km2)Grapes producedAglianico, Albariño, Barbera, Black Mu...

 

 

Irak Artikel ini adalah bagian dari seri Politik dan KetatanegaraanRepublik Irak Konstitusi Pemerintahan Pemerintah Federal Presiden (daftar) Abdul Latif Rashid Perdana Menteri (daftar) Haider al-Abadi Kabinet Kabinet saat ini Legislatif Majelis Perwakilan Ketua: Salim al-Jabouri Yudikatif Mahkamah Agung Federal Pembagian Administratif Kegubernuran (provinsi) Distrik Kurdistan Irak Pemerintah Regional Kurdistan Parlemen Kurdistan Irak Pemilihan umum Partai politik Komisi Pemilihan Umum Pemili...

 

 

العلاقات الأرجنتينية السنغافورية الأرجنتين سنغافورة   الأرجنتين   سنغافورة تعديل مصدري - تعديل   العلاقات الأرجنتينية السنغافورية هي العلاقات الثنائية التي تجمع بين الأرجنتين وسنغافورة.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجع...

Anisopodus Anisopodus strigosus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Acanthocinini Genus: Anisopodus Anisopodus adalah genus kumbang tanduk panjang yang berasal dari famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada b...

 

 

Mountain range in New Mexico Location of the Brazos Mountains within New Mexico 36°49′53″N 106°24′27″W / 36.8314021°N 106.4075307°W / 36.8314021; -106.4075307 The Brazos Mountains is a range in far northern Rio Arriba County, in northern New Mexico in the southwestern United States. The range is part of the Tusas Mountains (the southern portion of the San Juan Mountains), which extended slightly into Colorado. A high crest runs from the border with Colorado...

 

 

Mayor of Los Angeles James R. TobermanPortrait of James Toberman,12th Mayor of Los AngelesIn officeDecember 5, 1872 – December 18, 1874Preceded byCristóbal AguilarSucceeded byPrudent BeaudryIn officeDecember 5, 1878 – December 9, 1882Preceded byBernard CohnSucceeded byCameron E. Thom Personal detailsBorn1836DiedJanuary 26, 1911(1911-01-26) (aged 74–75) James Ralph Toberman (1836 – January 26, 1911) served six one-year terms as Mayor of Los Angeles. He f...

PatmosΠάτμος Kastil Patmos Letak Koordinat 37°19′N 26°30′E / 37.317°N 26.500°E / 37.317; 26.500Koordinat: 37°19′N 26°30′E / 37.317°N 26.500°E / 37.317; 26.500 Zona waktu: EET/EEST (UTC+2/3) Ketinggian (min-max): 0 - 269 m (0 - 883 ft) Pemerintah Negara: Yunani Periferal: South Aegean Statistik penduduk (pada 2001[1]) Kotamadya  - Jumlah penduduk: 3.044  - Luas:...

 

 

Disambiguazione – Se stai cercando l'omonima professione, vedi Dentista. Elementi dell'organo dentale L'odontoiatria (dal greco ὀδούς, ὀδόντος: «dente» + ἰατρεία: «cura», lett. cura dei denti) è la branca della medicina che si occupa della prevenzione, della diagnosi e della terapia delle patologie dentali. Essa ricorre, altresì, alla sostituzione degli elementi dentali perduti o non suscettibili di terapia conservativa mediante la riabilitazione protesica denta...

 

 

The state highways are arterial routes of a state, linking district headquarters and important towns within the state and connecting them with national highways or Highways of the neighboring states. Introduction Sikkim state has a good road network. There are 8 national highways with total length of 512 km and many state highways with total length of 3,668.78 km.[1][2] Type of road and its length Sl. No. Type of Road Length (in km) 1 National highways 512 2 State h...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

Lauingen Lambang kebesaranLetak Lauingen NegaraJermanNegara bagianBayernWilayahSchwabenKreisDillingen an der DonauPemerintahan • MayorWolfgang Schenk (SPD)Luas • Total44,39 km2 (1,714 sq mi)Ketinggian439 m (1,440 ft)Populasi (2013-12-31)[1] • Total10.598 • Kepadatan2,4/km2 (6,2/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos89415Kode area telepon09072Pelat kendaraanDLGSitus webwww.lauingen.de Lauingen adal...

 

 

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

泰国陆军元帅他侬·吉滴卡宗ถนอม กิตติขจรPChW SR MPCh MWM第10任泰國總理任期1963年12月9日—1973年10月14日君主拉玛九世前任沙立·他那叻元帥继任訕耶·探瑪塞任期1958年1月1日—1958年10月20日君主拉玛九世前任乃朴·沙拉信继任沙立·他那叻元帥第32任泰國國防部長任期1957年9月23日—1973年10月14日前任鑾披汶·頌堪继任他威·尊拉塞(英语:Dawee Chullasapya) 个人资料出...

 

 

Original song co-written and performed by For the comedy film, see Ciao, ciao bambina! Piove (Ciao, ciao bambina)Eurovision Song Contest 1959 entryCountryItalyArtist(s)Domenico ModugnoLanguageItalianComposer(s)Domenico ModugnoLyricist(s)Dino VerdeConductorWilliam GalassiniFinals performanceFinal result6thFinal points9Entry chronology◄ Nel blu, dipinto di blu (1958)Romantica (1960) ► Ciao ciao bambinaCover of EPSong by DalidaReleasedApril 1959 (1959-04)RecordedFebruary 25, 1959St...

 

 

Voce principale: Unione Sportiva Dilettantistica Arezzo. Unione Sportiva ArezzoStagione 1984-1985 Sport calcio Squadra Arezzo Allenatore Enzo Riccomini (1ª-23ª) Giuseppe Chiappella (24ª-32ª) Mario Rossi (33ª-38ª) Presidente Narciso Terziani Serie B14º posto Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Bertoni, Colantuono, Pellicanò (36) Miglior marcatoreCampionato: Tovalieri (10) 1983-1984 1985-1986 Si invita a seguire il modello di voce Questa voce raccoglie le informaz...

Polish artist (1858-1925) Jan StykaJan Styka, 1905Born8 April 1858Lemberg, Austrian PolandDied11 April 1925(1925-04-11) (aged 67)Rome, Kingdom of ItalyNationalityPolishKnown forPaintingNotable workThe Racławice Panorama, 1894Transylvania Panorama,1897 Jan Styka (April 8, 1858 in Lemberg – April 11, 1925 in Rome) was a Polish painter noted for producing large historical, battle-piece, and Christian religious panoramas.[1] He was also illustrator and poet. Known also as a g...

 

 

Overview of the process of outsourcing of various business processes Negros first CyberCentre IT and BPO рub in Bacolod, Philippines One of the most dynamic and fastest growing sectors in the Philippines is the information technology–business process outsourcing (IT-BPO) industry. The industry is composed of eight sub-sectors, namely, knowledge process outsourcing and back offices, animation, call centers, software development, game development, engineering design, and medical transcriptio...