The de Broglie relation,[10][11][12] also known as de Broglie's momentum–wavelength relation,[4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = h/p. Combining de Broglie's postulate with the Planck–Einstein relation leads to
or
The de Broglie relation is also often encountered in vector form
where p is the momentum vector, and k is the angular wave vector.
Bohr's frequency condition
Bohr's frequency condition[13] states that the frequency of a photon absorbed or emitted during an electronic transition is related to the energy difference (ΔE) between the two energy levels involved in the transition:[14]
This is a direct consequence of the Planck–Einstein relation.
Cohen-Tannoudji, C., Diu, B., Laloë, F. (1973/1977). Quantum Mechanics, translated from the French by S.R. Hemley, N. Ostrowsky, D. Ostrowsky, second edition, volume 1, Wiley, New York, ISBN0471164321.
van der Waerden, B.L. (1967). Sources of Quantum Mechanics, edited with a historical introduction by B.L. van der Waerden, North-Holland Publishing, Amsterdam.
Weinberg, S. (1995). The Quantum Theory of Fields, volume 1, Foundations, Cambridge University Press, Cambridge UK, ISBN978-0-521-55001-7.