Einstein–de Haas effect

The Einstein–de Haas effect is a physical phenomenon in which a change in the magnetic moment of a free body causes this body to rotate. The effect is a consequence of the conservation of angular momentum. It is strong enough to be observable in ferromagnetic materials. The experimental observation and accurate measurement of the effect demonstrated that the phenomenon of magnetization is caused by the alignment (polarization) of the angular momenta of the electrons in the material along the axis of magnetization. These measurements also allow the separation of the two contributions to the magnetization: that which is associated with the spin and with the orbital motion of the electrons. The effect also demonstrated the close relation between the notions of angular momentum in classical and in quantum physics.

The effect was predicted[1] by O. W. Richardson in 1908. It is named after Albert Einstein and Wander Johannes de Haas, who published two papers[2][3] in 1915 claiming the first experimental observation of the effect.

Description

The orbital motion of an electron (or any charged particle) around a certain axis produces a magnetic dipole with the magnetic moment of where and are the charge and the mass of the particle, while is the angular momentum of the motion (SI units are used). In contrast, the intrinsic magnetic moment of the electron is related to its intrinsic angular momentum (spin) as (see Landé g-factor and anomalous magnetic dipole moment).

If a number of electrons in a unit volume of the material have a total orbital angular momentum of with respect to a certain axis, their magnetic moments would produce the magnetization of . For the spin contribution the relation would be . A change in magnetization, implies a proportional change in the angular momentum, of the electrons involved. Provided that there is no external torque along the magnetization axis applied to the body in the process, the rest of the body (practically all its mass) should acquire an angular momentum due to the law of conservation of angular momentum.

Experimental setup

Experimental setup

The experiments involve a cylinder of a ferromagnetic material suspended with the aid of a thin string inside a cylindrical coil which is used to provide an axial magnetic field that magnetizes the cylinder along its axis. A change in the electric current in the coil changes the magnetic field the coil produces, which changes the magnetization of the ferromagnetic cylinder and, due to the effect described, its angular momentum. A change in the angular momentum causes a change in the rotational speed of the cylinder, monitored using optical devices. The external field interacting with a magnetic dipole cannot produce any torque () along the field direction. In these experiments the magnetization happens along the direction of the field produced by the magnetizing coil, therefore, in absence of other external fields, the angular momentum along this axis must be conserved.

In spite of the simplicity of such a layout, the experiments are not easy. The magnetization can be measured accurately with the help of a pickup coil around the cylinder, but the associated change in the angular momentum is small. Furthermore, the ambient magnetic fields, such as the Earth field, can provide a 107–108 times larger[4] mechanical impact on the magnetized cylinder. The later accurate experiments were done in a specially constructed demagnetized environment with active compensation of the ambient fields. The measurement methods typically use the properties of the torsion pendulum, providing periodic current to the magnetization coil at frequencies close to the pendulum's resonance.[2][4] The experiments measure directly the ratio: and derive the dimensionless gyromagnetic factor of the material from the definition: . The quantity is called gyromagnetic ratio.

History

The expected effect and a possible experimental approach was first described by Owen Willans Richardson in a paper[1] published in 1908. The electron spin was discovered in 1925, therefore only the orbital motion of electrons was considered before that. Richardson derived the expected relation of . The paper mentioned the ongoing attempts to observe the effect at Princeton University.

In that historical context the idea of the orbital motion of electrons in atoms contradicted classical physics. This contradiction was addressed in the Bohr model in 1913, and later was removed with the development of quantum mechanics.

Samuel Jackson Barnett, motivated by the Richardson's paper realized that the opposite effect should also happen – a change in rotation should cause a magnetization (the Barnett effect). He published[5] the idea in 1909, after which he pursued the experimental studies of the effect.

Einstein and de Haas published two papers[2][3] in April 1915 containing a description of the expected effect and the experimental results. In the paper "Experimental proof of the existence of Ampere's molecular currents"[3] they described in details the experimental apparatus and the measurements performed. Their result for the ratio of the angular momentum of the sample to its magnetic moment (the authors called it ) was very close (within 3%) to the expected value of . It was realized later that their result with the quoted uncertainty of 10% was not consistent with the correct value which is close to . Apparently, the authors underestimated the experimental uncertainties.

Barnett reported the results of his measurements at several scientific conferences in 1914. In October 1915 he published the first observation of the Barnett effect in a paper[6] titled "Magnetization by Rotation". His result for was close to the right value of , which was unexpected at that time.

In 1918 John Quincy Stewart published[7] the results of his measurements confirming the Barnett's result. In his paper he was calling the phenomenon the 'Richardson effect'.

The following experiments demonstrated that the gyromagnetic ratio for iron is indeed close to rather than . This phenomenon, dubbed "gyromagnetic anomaly" was finally explained after the discovery of the spin and introduction of the Dirac equation in 1928.

The experimental equipment was later donated by Geertruida de Haas-Lorentz, wife of de Haas and daughter of Lorentz, to the Ampère Museum in Lyon France in 1961. It went lost and was later rediscovered in 2023.[8][9]

Literature about the effect and its discovery

Detailed accounts of the historical context and the explanations of the effect can be found in literature[10][11] Commenting on the papers by Einstein, Calaprice in The Einstein Almanac writes:[12]

52. "Experimental Proof of Ampère's Molecular Currents" (Experimenteller Nachweis der Ampereschen Molekularströme) (with Wander J. de Hass). Deutsche Physikalische Gesellschaft, Verhandlungen 17 (1915): 152–170.

Considering [André-Marie] Ampère's hypothesis that magnetism is caused by the microscopic circular motions of electric charges, the authors proposed a design to test [Hendrik] Lorentz's theory that the rotating particles are electrons. The aim of the experiment was to measure the torque generated by a reversal of the magnetisation of an iron cylinder.

Calaprice further writes:

53. "Experimental Proof of the Existence of Ampère's Molecular Currents" (with Wander J. de Haas) (in English). Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 18 (1915–16).

Einstein wrote three papers with Wander J. de Haas on experimental work they did together on Ampère's molecular currents, known as the Einstein–De Haas effect. He immediately wrote a correction to paper 52 (above) when Dutch physicist H. A. Lorentz pointed out an error. In addition to the two papers above [that is 52 and 53] Einstein and de Haas cowrote a "Comment" on paper 53 later in the year for the same journal. This topic was only indirectly related to Einstein's interest in physics, but, as he wrote to his friend Michele Besso, "In my old age I am developing a passion for experimentation."

The second paper by Einstein and de Haas[3] was communicated to the "Proceedings of the Royal Netherlands Academy of Arts and Sciences" by Hendrik Lorentz who was the father-in-law of de Haas. According to Viktor Frenkel,[10] Einstein wrote in a report to the German Physical Society: "In the past three months I have performed experiments jointly with de Haas–Lorentz in the Imperial Physicotechnical Institute that have firmly established the existence of Ampère molecular currents." Probably, he attributed the hyphenated name to de Haas, not meaning both de Haas and H. A. Lorentz.

Later measurements and applications

The effect was used to measure the properties of various ferromagnetic elements and alloys.[4] The key to more accurate measurements was better magnetic shielding, while the methods were essentially similar to those of the first experiments. The experiments measure the value of the g-factor (here we use the projections of the pseudovectors and onto the magnetization axis and omit the sign). The magnetization and the angular momentum consist of the contributions from the spin and the orbital angular momentum: , .

Using the known relations , and , where is the g-factor for the anomalous magnetic moment of the electron, one can derive the relative spin contribution to magnetization as: .

For pure iron the measured value is ,[13] and . Therefore, in pure iron 96% of the magnetization is provided by the polarization of the electrons' spins, while the remaining 4% is provided by the polarization of their orbital angular momenta.

See also

References

  1. ^ a b Richardson, O. W. (1908). "A Mechanical Effect Accompanying Magnetization". Physical Review. Series I. 26 (3): 248–253. Bibcode:1908PhRvI..26..248R. doi:10.1103/PhysRevSeriesI.26.248.
  2. ^ a b c Einstein, A.; de Haas, W. J. (1915). "Experimenteller Nachweis der Ampereschen Molekularströme" [Experimental Proof of Ampère's Molecular Currents]. Deutsche Physikalische Gesellschaft, Verhandlungen (in German). 17: 152–170.
  3. ^ a b c d Einstein, A.; de Haas, W. J. (1915). "Experimental proof of the existence of Ampère's molecular currents" (PDF). Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings. 18: 696–711. Bibcode:1915KNAB...18..696E.
  4. ^ a b c Scott, G. G. (1962). "Review of Gyromagnetic Ratio Experiments". Reviews of Modern Physics. 34 (1): 102–109. Bibcode:1962RvMP...34..102S. doi:10.1103/RevModPhys.34.102.
  5. ^ Barnett, S. J. (1908). "On Magnetization by Angular Acceleration". Science. 30 (769): 413. Bibcode:1909Sci....30..413B. doi:10.1126/science.30.769.413. PMID 17800024.
  6. ^ Barnett, S. J. (1915). "Magnetization by Rotation". Physical Review. 6 (4): 239–270. Bibcode:1915PhRv....6..239B. doi:10.1103/PhysRev.6.239.
  7. ^ Stewart, J. Q. (1918). "The Moment of Momentum Accompanying Magnetic Moment in Iron and Nickel". Physical Review. 11 (2): 100–270. Bibcode:1918PhRv...11..100S. doi:10.1103/PhysRev.11.100.
  8. ^ San Miguel, Alfonso; Pallandre, Bernard (13 March 2024). "Revisiting the Einstein-de Haas experiment: the Ampère Museum's hidden treasure" (PDF). Europhysics News: 12–14.
  9. ^ Johnston, Hamish (2024-03-17). "Einstein's only experiment is found in French museum". Physics World. Retrieved 2024-03-24.
  10. ^ a b Frenkel, Viktor Ya. (1979). "On the history of the Einstein–de Haas effect". Soviet Physics Uspekhi. 22 (7): 580–587. doi:10.1070/PU1979v022n07ABEH005587.
  11. ^ David R Topper (2007). Quirky sides of scientists: true tales of ingenuity and error from physics and astronomy. Springer. p. 11. ISBN 978-0-387-71018-1.
  12. ^ Alice Calaprice, The Einstein Almanac (Johns Hopkins University Press, Baltimore, 2005), p. 45. ISBN 0-8018-8021-1
  13. ^ Reck, R. A.; Fry, D. L. (1969). "Orbital and Spin Magnetization in Fe-Co, Fe-Ni, and Ni-Co". Physical Review. 184 (2): 492–495. Bibcode:1969PhRv..184..492R. doi:10.1103/PhysRev.184.492.
  • "Einsteins's only experiment" [1] (links to a directory of the Home Page of Physikalisch-Technische Bundesanstalt (PTB), Germany [2]). Here is a replica to be seen of the original apparatus on which the Einstein–de Haas experiment was carried out.

Read other articles:

DarwiniusRentang fosil: Eocene, 47 jtyl PreЄ Є O S D C P T J K Pg N ↓ Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Primates Famili: Notharctidae Subfamili: Cercamoniinae Genus: Darwinius Spesies: D. masillae Nama binomial Darwinius masillaeFranzen et al., 2009 Darwinius adalah genus adalah primata yang hidup pada masa Eosen, sekitar 47 juta tahun yang lalu. Hanya terdapat satu spesies yang telah ditemukan, yaitu Darwinius masillae. Nama Darwin...

 

God Is a WomanSingel oleh Ariana Grandedari album SweetenerDirilis13 Juli 2018 (2018-07-13)Format Unduhan digital streaming Genre Pop hip hop Durasi3:17LabelRepublicPencipta Ariana Grande Ilya Salmanzadeh Max Martin Savan Kotecha Rickard Göransson ProduserIlyaKronologi singel Ariana Grande Bed (2018) God Is a Woman (2018) Breathin (2018) Video musikGod Is a Woman di YouTube God Is a Woman adalah lagu oleh penyanyi asal Amerika Serikat, Ariana Grande. Lagu ini dirilis pada 13 Juli 2018, ...

 

نلسونفيل     الإحداثيات 41°25′28″N 73°56′39″W / 41.4244°N 73.9442°W / 41.4244; -73.9442   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة بوتنام  خصائص جغرافية  المساحة 2.68043 كيلومتر مربع2.680428 كيلومتر مربع (1 أبريل 2010)  ارتفاع 57 متر  عدد ال...

Phyllosilicate mineral CaryopiliteBrown crust of caryopilite on rhodochrositeGeneralCategoryPhyllosilicate mineralsFormula(repeating unit)(Mn2+,Mg)3Si2O5(OH)4[1]IMA symbolCpl[2]Strunz classification9.ED.15Dana classification71.1.2b.1Crystal systemMonoclinicCrystal classDomatic (m) (same H-M symbol)Space groupCmUnit cella = 5.66 Å, b = 9.81 Å, c = 7.52 Å, β = 104.52°; Z = 2[1]IdentificationFormula mass3 to 3.5ColorReddish brown, tanLight br...

 

Publicité de 1876 pour un hectographe, procédé de duplication utilisant une pâte gélatineuse et une encre aniline. La duplication ou la copie (mécanique) de documents papier désigne un ensemble de procédés techniques permettant la copie de textes et d'images à des échelles variables. Les formes les plus anciennes incluent la lithographie, les duplicateurs à alcool, etc. Contexte social Avec la deuxième révolution industrielle, entamée à la fin du XIXe siècle, de nouvelle...

 

Filsafat Pancasila adalah penggunaan nilai-nilai pancasila sebagai dasar negara dan pandangan hidup bernegara. Pancasila sebagai filsafat juga bahwa pancasila mengandung pandangan, nilai, dan pemikiran yang dapat menjadi substansi dan isi pembentukan ideologi Pancasila. Fungsi filsafat pancasila Filsafat Pancasila memiliki beberapa fungsi diantaranya : Pancasila sebagai jiwa Bangsa Indonesia. Didalam suatu bangsa identik dengan jiwanya bangsanya masing-masing. Di Indonesia pancasila meru...

Ini adalah nama Melayu; nama Sabu merupakan patronimik, bukan nama keluarga, dan tokoh ini dipanggil menggunakan nama depannya, Mohamad. Kata bin (b.) atau binti (bt.), jika digunakan, berarti putra dari atau putri dari. Yang Berhormat Datuk Seri HajiMohamad SabuSMW APمحمد سابو Menteri Pertanian dan Ketahanan Pangan MalaysiaPetahanaMulai menjabat 3 Desember 2022Perdana MenteriAnwar IbrahimPendahuluRonald KiandeePenggantiPetahanaMenteri Pertahanan MalaysiaMasa jabatan21 Mei 2018...

 

Variable or factor in causal inference Confounding factor redirects here. For the company, see Confounding Factor. For the psychological state, see Confusion. This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (September 2019) (Learn how and when to remove this template message) Whereas a mediator is a factor in the causal chain (above), a confounder is a spurious factor inc...

 

Nissan GT-R LM Nismo (2015)KategoriLe Mans Prototype 1 HybridKonstruktorNissanPerancangBen BowlbySpesifikasi teknisSasisSerat karbonSuspensi (depan)Independent multi-link pushrodsSuspensi (belakang)Independent multi-link pushrods with hydraulic anti-roll barPanjang4.645 mm (182,9 in)Lebar1.900 mm (75 in)Tinggi1.030 mm (41 in)MesinNissan VRX30A 3 L (3.000 cc) direct-injected twin-turbocharged V6 engine in a longitudinal front mid-engine configurationTran...

Manor House in Suffolk, EnglandColdham HallColdham HallTypeManor HouseLocationColdham Hall Lane, Stanningfield, Suffolk, EnglandCoordinates52°10′10″N 0°43′27″E / 52.1694°N 0.7243°E / 52.1694; 0.7243AreaSuffolkBuilt1574Built forRobert RookwoodArchitectural style(s)TudorOwnerMatthew Vaughn and Claudia Schiffer Listed Building – Grade IOfficial nameColdham HallDesignated14 July 1955Reference no.1229768 Location of Coldham Hall in Suffolk Coldham Hall i...

 

Association football club in England Football clubBilston Town Community FCFull nameBilston Town Community Football ClubNickname(s)The SteelmenFounded1894GroundQueen Street Stadium, BilstonCapacity4,000ChairmanDenise FrankhamManagerMike DunnLeagueMidland League Division One2022–23Midland League Division One, 6th of 21 Home colours Away colours Bilston Town Football Club is a football club based in Bilston, West Midlands, England. Having played under the names Bilston United, Bilston Borough...

 

В этом китайском имени фамилия (Дуань) стоит перед личным именем. Дуань Цижуйкит. трад. 段祺瑞 Президент Китайской республики 1 июля — 13 июля 1917 Предшественник Ли Юаньхун Преемник Ли Юаньхун 24 ноября 1924 — 20 апреля 1926 Предшественник Хуан Фу Преемник Ху Вэйдэ Председате...

Ohio railroad (1885–1926) Cincinnati, Lebanon and Northern RailwayCL&N (red)OverviewHeadquartersCincinnati, Ohio, U.S.[1]LocaleMiami Valley, OhioDates of operation1885–1926SuccessorPennsylvania RailroadTechnicalTrack gauge4 ft 8+1⁄2 in (1,435 mm) standard gaugePrevious gaugeoriginally 3 ft (914 mm) The Cincinnati, Lebanon and Northern Railway (CL&N) was a local passenger and freight-carrying railroad in the southwestern part of the U...

 

Kenjiro TsudaKenjiro Tsuda, 2018Nama asal津田 健次郎Lahir11 Juni 1971 (umur 52)[1] Prefektur Osaka, Jepang[1]AlmamaterUniversitas MeijiPekerjaan Pemeran pengisi suara narator sutradara Tahun aktif1995–sekarangAgenANDSTIRTinggi170 cm (5 ft 7 in)[1]Situs webtsudaken.jp Kenjiro Tsuda (津田 健次郎code: ja is deprecated , Tsuda Kenjirō, lahir 11 Juni 1971) adalah seorang pemeran, pengisi suara, narator, dan sutradara asal Prefektu...

 

لا يزال النص الموجود في هذه الصفحة في مرحلة الترجمة من الإنجليزية إلى العربية. إذا كنت تعرف اللغة الإنجليزية، لا تتردد في الترجمة من النص الأصلي باللغة الإنجليزية. (أبريل 2019) هندوسيةمعلومات عامةصنف فرعي من ديانات هندية[1]دين شعبيدين الدولة الاسم الأصل हिन्दूधर्म�...

العلاقات النمساوية الغرينادية النمسا غرينادا   النمسا   غرينادا تعديل مصدري - تعديل   العلاقات النمساوية الغرينادية هي العلاقات الثنائية التي تجمع بين النمسا وغرينادا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

 

  لمعانٍ أخرى، طالع نيل (توضيح). النيل الأبيض جسر معدني يمتد بين ضفتي النيل الأبيض في جوبا صورة للمسار المنطقة البلد رواندا جمهورية الكونغو الديمقراطية السودان جنوب السودان تنزانيا أوغندا  الخصائص الطول 720 كم بمسمى النيل الأبيض المجرى المنبع الرئيسي بحيرة فيكتوريا&...

 

  此條目介紹的是2009年成立于天津、主营客运业务的天津航空有限责任公司。关于2016年成立于天津、主营货运业务的天津货运航空责任公司,请见「天津航空 (消歧义)」。 天津航空 IATA ICAO 呼号 GS GCR BOHAI渤海 創立於2006年11月15日(大新华快运)樞紐機場天津滨海国际机场 西安咸阳国际机场次要樞紐機場海口美兰国际机场 呼和浩特白塔国际机场 乌鲁木齐地窝堡国际�...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Catedral de San José y San Andrés (San Andrés Tuxtla)» – noticias · libros · académico · imágenesEste aviso fue puesto el 12 de enero de 2012. Catedral de San José y San Andrés de San Andrés Tuxtla Monumento histórico(06964) LocalizaciónPaís México MéxicoDivisión Veracruz de Ignacio de la LlaveSubdivisión San Andrés TuxtlaDirección Constituci...

 

此條目需要补充更多来源。 (2015年12月22日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:新喀里多尼亞 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 新喀里多尼亞Nouvelle-Calédonie(法語) 国旗 国徽 国歌:《马赛曲》地方颂�...