Einstein relation (kinetic theory)

In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected[clarification needed] connection revealed independently by William Sutherland in 1904,[1][2][3] Albert Einstein in 1905,[4] and by Marian Smoluchowski in 1906[5] in their works on Brownian motion. The more general form of the equation in the classical case is[6]

where

This equation is an early example of a fluctuation-dissipation relation.[7] Note that the equation above describes the classical case and should be modified when quantum effects are relevant.

Two frequently used important special forms of the relation are:

  • Einstein–Smoluchowski equation, for diffusion of charged particles:[8]
  • Stokes–Einstein–Sutherland equation, for diffusion of spherical particles through a liquid with low Reynolds number:

Here

Special cases

Electrical mobility equation (classical case)

For a particle with electrical charge q, its electrical mobility μq is related to its generalized mobility μ by the equation μ = μq/q. The parameter μq is the ratio of the particle's terminal drift velocity to an applied electric field. Hence, the equation in the case of a charged particle is given as

where

  • is the diffusion coefficient ().
  • is the electrical mobility ().
  • is the electric charge of particle (C, coulombs)
  • is the electron temperature or ion temperature in plasma (K).[9]

If the temperature is given in volts, which is more common for plasma: where

  • is the charge number of particle (unitless)
  • is electron temperature or ion temperature in plasma (V).

Electrical mobility equation (quantum case)

For the case of Fermi gas or a Fermi liquid, relevant for the electron mobility in normal metals like in the free electron model, Einstein relation should be modified: where is Fermi energy.

Stokes–Einstein–Sutherland equation

In the limit of low Reynolds number, the mobility μ is the inverse of the drag coefficient . A damping constant is frequently used for the inverse momentum relaxation time (time needed for the inertia momentum to become negligible compared to the random momenta) of the diffusive object. For spherical particles of radius r, Stokes' law gives where is the viscosity of the medium. Thus the Einstein–Smoluchowski relation results into the Stokes–Einstein–Sutherland relation This has been applied for many years to estimating the self-diffusion coefficient in liquids, and a version consistent with isomorph theory has been confirmed by computer simulations of the Lennard-Jones system.[10]

In the case of rotational diffusion, the friction is , and the rotational diffusion constant is This is sometimes referred to as the Stokes–Einstein–Debye relation.

Semiconductor

In a semiconductor with an arbitrary density of states, i.e. a relation of the form between the density of holes or electrons and the corresponding quasi Fermi level (or electrochemical potential) , the Einstein relation is[11][12] where is the electrical mobility (see § Proof of the general case for a proof of this relation). An example assuming a parabolic dispersion relation for the density of states and the Maxwell–Boltzmann statistics, which is often used to describe inorganic semiconductor materials, one can compute (see density of states): where is the total density of available energy states, which gives the simplified relation:

Nernst–Einstein equation

By replacing the diffusivities in the expressions of electric ionic mobilities of the cations and anions from the expressions of the equivalent conductivity of an electrolyte the Nernst–Einstein equation is derived: were R is the gas constant.

Proof of the general case

The proof of the Einstein relation can be found in many references, for example see the work of Ryogo Kubo.[13]

Suppose some fixed, external potential energy generates a conservative force (for example, an electric force) on a particle located at a given position . We assume that the particle would respond by moving with velocity (see Drag (physics)). Now assume that there are a large number of such particles, with local concentration as a function of the position. After some time, equilibrium will be established: particles will pile up around the areas with lowest potential energy , but still will be spread out to some extent because of diffusion. At equilibrium, there is no net flow of particles: the tendency of particles to get pulled towards lower , called the drift current, perfectly balances the tendency of particles to spread out due to diffusion, called the diffusion current (see drift-diffusion equation).

The net flux of particles due to the drift current is i.e., the number of particles flowing past a given position equals the particle concentration times the average velocity.

The flow of particles due to the diffusion current is, by Fick's law, where the minus sign means that particles flow from higher to lower concentration.

Now consider the equilibrium condition. First, there is no net flow, i.e. . Second, for non-interacting point particles, the equilibrium density is solely a function of the local potential energy , i.e. if two locations have the same then they will also have the same (e.g. see Maxwell-Boltzmann statistics as discussed below.) That means, applying the chain rule,

Therefore, at equilibrium:

As this expression holds at every position , it implies the general form of the Einstein relation:

The relation between and for classical particles can be modeled through Maxwell-Boltzmann statistics where is a constant related to the total number of particles. Therefore

Under this assumption, plugging this equation into the general Einstein relation gives: which corresponds to the classical Einstein relation.

See also

References

  1. ^ World Year of Physics – William Sutherland at the University of Melbourne. Essay by Prof. R Home (with contributions from Prof B. McKellar and A./Prof D. Jamieson) dated 2005. Accessed 2017-04-28.
  2. ^ Sutherland William (1905). "LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin". Philosophical Magazine. Series 6. 9 (54): 781–785. doi:10.1080/14786440509463331.
  3. ^ P. Hänggi, "Stokes–Einstein–Sutherland equation".
  4. ^ Einstein, A. (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen". Annalen der Physik (in German). 322 (8): 549–560. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806.
  5. ^ von Smoluchowski, M. (1906). "Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen". Annalen der Physik (in German). 326 (14): 756–780. Bibcode:1906AnP...326..756V. doi:10.1002/andp.19063261405.
  6. ^ Dill, Ken A.; Bromberg, Sarina (2003). Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science. p. 327. ISBN 9780815320517.
  7. ^ Umberto Marini Bettolo Marconi, Andrea Puglisi, Lamberto Rondoni, Angelo Vulpiani, "Fluctuation-Dissipation: Response Theory in Statistical Physics".
  8. ^ Van Zeghbroeck, "Principles of Semiconductor Devices", Chapter 2.7 Archived 2021-05-06 at the Wayback Machine.
  9. ^ Raizer, Yuri (2001). Gas Discharge Physics. Springer. pp. 20–28. ISBN 978-3540194620.
  10. ^ Costigliola, Lorenzo; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C. (2019-01-14). "Revisiting the Stokes-Einstein relation without a hydrodynamic diameter" (PDF). The Journal of Chemical Physics. 150 (2): 021101. Bibcode:2019JChPh.150b1101C. doi:10.1063/1.5080662. ISSN 0021-9606. PMID 30646717.
  11. ^ Ashcroft, N. W.; Mermin, N. D. (1988). Solid State Physics. New York (USA): Holt, Rineheart and Winston. p. 826.
  12. ^ Bonnaud, Olivier (2006). Composants à semiconducteurs (in French). Paris (France): Ellipses. p. 78.
  13. ^ Kubo, R. (1966). "The fluctuation-dissipation theorem". Rep. Prog. Phys. 29 (1): 255–284. arXiv:0710.4394. Bibcode:1966RPPh...29..255K. doi:10.1088/0034-4885/29/1/306. S2CID 250892844.

Read other articles:

Hanna SolfHanna SolfLahirJohanna Dotti14 November 1887NeuhagenMeninggal4 November 1954 Johanna Susanne Elisabeth Solf (née Dotti, 14 November 1887 – 4 November 1954) adalah seorang pemberontak Jerman anti-Nazi. Ia merupakan istri dari Wilhelm Solf. Saat suaminya meninggal pada tahun 1936, dia menjadi pemimpin kelompok anti-Nazi Lingkaran Solf. Pertemuan resmi pertama mereka diadakan pada tahun 1943, dengan kedok pesta ulang tahun ke-50 untuk salah satu peserta. Dari sana, me...

 

 

Marsh subject to tidal change in water See also: Salt marsh Tidal salt marsh at Ella Nore in Chichester, England. A tidal marsh (also known as a type of tidal wetland) is a marsh found along rivers, coasts and estuaries which floods and drains by the tidal movement of the adjacent estuary, sea or ocean.[1] Tidal marshes experience many overlapping persistent cycles, including diurnal and semi-diurnal tides, day-night temperature fluctuations, spring-neap tides, seasonal vegetation gro...

 

 

Pour les articles homonymes, voir Jacques II. Cet article est une ébauche concernant l’Écosse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Jacques II Jacques II Titre Roi d'Écosse 21 février 1437 – 3 août 1460 (23 ans, 5 mois et 13 jours) Couronnement 25 mars 1437 Prédécesseur Jacques Ier Successeur Jacques III Duc de Rothesay 1430 – 21 février 1437(7 ans) Prédécesseur Ale...

American Association football Bob Sell, owner of the Bethlehem Bulldogs, in 1946 The Bethlehem Bulldogs was a professional American football team based in Bethlehem, Pennsylvania from 1946 to 1950. They played in the American Football League and were a minor league professional affiliate of the Philadelphia Eagles of the National Football League. The Bulldogs played in the league's Western Division until the league dissolved its divisions in 1947, winning the league title in that year. They s...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Bassano Virtus 55 Soccer Team. Bassano Virtus 55 Soccer TeamStagione 2012-2013Sport calcio Squadra Bassano Virtus Allenatore Claudio Rastelli Presidente Stefano Rosso Lega Pro Seconda Divisione4º posto nel girone A. Maggiori presenzeCampionato: Correa (33) Migli...

 

 

Questa voce o sezione sull'argomento competizioni calcistiche non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Pro League 2008-2009Jupiler Pro League 2008-2009 Competizione Pro League Sport Calcio Edizione 106ª Organizzatore URBSFA/KBVB Date dal 16 agosto 2008al 16 maggio 2009 Luogo  Belgio Partecipanti 18 Risultati Vincitore  Standard Liegi(10º titolo) Ret...

Questa voce sull'argomento centri abitati del Nicaragua è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. San MarcoscomuneSan Marcos – Veduta LocalizzazioneStato Nicaragua DipartimentoCarazo AmministrazioneSindacoJulinda del Socorro Téllez Ampié TerritorioCoordinate11°54′27.97″N 86°12′14.09″W / 11.907769°N 86.203914°W11.907769; -86.203914 (San Marcos)Coordinate: 11°54′27.97″N 86°12′14.09″W / ...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды...

 

 

French politician (1701–1794) Jean-Baptiste de Machault d'Arnouville Jean-Baptiste de Machault d'Arnouville, comte d'Arnouville, seigneur de Garge et de Gonesse (Paris, 13 December 1701 – Paris, 12 July 1794), He was a French statesman, son of Louis Charles Machault d'Arnouville, lieutenant of police.[1] In 1721, he was counsel to the Parlement of Paris, in 1728 he was maître des requêtes, and ten years later was made president of the Great Council; although he had opposed the c...

Voce principale: Giochi della XXX Olimpiade. Ciclismo a Londra 2012 Ciclismo su strada Corsa in linea   uomini   donne Cronometro uomini donne Ciclismo su pista Inseguimento a sq. uomini donne Velocità uomini donne Velocità a sq. uomini donne Keirin uomini donne Omnium uomini donne Mountain bike Cross country uomini donne BMX BMX uomini donne Le gare di ciclismo ai Giochi di Londra si sono svolte complessivamente tra il 28 luglio e il 12 agosto 2012 in quattro sedi diverse: il Lo...

 

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁...

 

 

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

البطولات الوطنية الأمريكية 1919 رقم الفعالية 39  البلد الولايات المتحدة  التاريخ 1919  الرياضة كرة المضرب  البطولات الوطنية الأمريكية 1918  البطولات الوطنية الأمريكية 1920  تعديل مصدري - تعديل   يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير ه...

 

 

American tennis player (born 1995) Jamie LoebLoeb at Wimbledon in 2018Country (sports) United StatesResidenceOssining, New YorkBorn (1995-03-08) March 8, 1995 (age 29)Bronxville, New YorkHeight1.68 m (5 ft 6 in)Turned pro2015PlaysRight (two-handed backhand)CollegeUniversity of North Carolina (2013–15)Prize moneyUS$781,674SinglesCareer record272–233 (53.9%)Career titles10 ITFHighest rankingNo. 132 (February 5, 2018)Current rankingNo. 3...

 

 

English royal house of Welsh origin Tudors redirects here. For other uses, see Tudor (disambiguation). House of TudorTudor roseParent houseTudors of PenmynyddCountry Kingdom of England Kingdom of Ireland Principality of Wales Founded1485; 539 years ago (1485)FounderHenry VII (first Tudor king)Final rulerElizabeth ITitles King of England King of Ireland King of France (claim) Lord of Ireland Queen of Scotland Queen of France Prince of Wales Duke of Bedford Duke of Cornwall Du...

Process whereby a society either voluntarily or involuntarily reduces its total energy consumption This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Energy descent – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this message) A 1956 world oil production distribution, s...

 

 

Serb politician and assassin Puniša RačićPuniša Račić, c. 1925Member of Parliament in the Kingdom of Serbs, Croats and SlovenesIn office27 September 1927 – 20 June 1928 Personal detailsBorn(1886-07-12)12 July 1886Slatina, Principality of MontenegroDied16 October 1944(1944-10-16) (aged 58)Belgrade, Democratic Federal YugoslaviaPolitical partyPeople's Radical Party (NRS) Puniša Račić (Serbian Cyrillic: Пуниша Рачић; 12 July 1886 – 16 October 1944) was...

 

 

Nhật Bản Quốc Tên bản ngữ 日本国 • Nippon-koku • Nihon-koku(tiếng Nhật) Quốc kỳ Hoàng gia huy Quốc ca: Kimigayo君が代Quân Chi Đại[1][2] Quốc ấn Vị trí của Nhật Bản (xanh lá) trên thế giới,bao gồm quần đảo Kuril hiện đang tranh chấp vớiLiên bang Nga (xanh nhạt).Lãnh thổ trên thực tế thuộc quyền kiểm soátcủa Nhật Bản (nâu).Tổng quanThủ đôTokyo (de facto)T...

Village in Surrey, England This article is about the village in Surrey. For the equipment rental company, see Ashtead Group. For the area of Birmingham, see Ashted. Village in EnglandAshteadVillageAshtead Park House, a school since the 1920sBarnett Wood Lane with pond to the rightAshteadLocation within SurreyArea11.59 km2 (4.47 sq mi)Population14,169 (2011 census)[1]• Density1,223/km2 (3,170/sq mi)OS grid referenceTQ1858Civil parishn/aDistrict...

 

 

Artwork by Yoko Ono Wish Tree for Washington, DCArtistYoko OnoYear2007 (2007)TypeLive tree and mixed mediaLocationHirshhorn Museum and Sculpture Garden, Washington, D.C., United StatesOwnerSmithsonian Institution Wish Tree for Washington, DC is a public art work by Yoko Ono. As a part of her Imagine Peace billboard project,[1] it was installed in the Hirshhorn Museum and Sculpture Garden on April 2, 2007,[2] during the 2007 National Cherry Blossom Festival, as one of ten ...