Picard group

In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.

Alternatively, the Picard group can be defined as the sheaf cohomology group

For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group.

The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces.

Examples

  • The Picard group of the spectrum of a Dedekind domain is its ideal class group.
  • The invertible sheaves on projective space Pn(k) for k a field, are the twisting sheaves so the Picard group of Pn(k) is isomorphic to Z.
  • The Picard group of the affine line with two origins over k is isomorphic to Z.
  • The Picard group of the -dimensional complex affine space: , indeed the exponential sequence yields the following long exact sequence in cohomology
and since [1] we have because is contractible, then and we can apply the Dolbeault isomorphism to calculate by the Dolbeault–Grothendieck lemma.

Picard scheme

The construction of a scheme structure on (representable functor version of) the Picard group, the Picard scheme, is an important step in algebraic geometry, in particular in the duality theory of abelian varieties. It was constructed by Grothendieck (1962), and also described by Mumford (1966) and Kleiman (2005).

In the cases of most importance to classical algebraic geometry, for a non-singular complete variety V over a field of characteristic zero, the connected component of the identity in the Picard scheme is an abelian variety called the Picard variety and denoted Pic0(V). The dual of the Picard variety is the Albanese variety, and in the particular case where V is a curve, the Picard variety is naturally isomorphic to the Jacobian variety of V. For fields of positive characteristic however, Igusa constructed an example of a smooth projective surface S with Pic0(S) non-reduced, and hence not an abelian variety.

The quotient Pic(V)/Pic0(V) is a finitely-generated abelian group denoted NS(V), the Néron–Severi group of V. In other words, the Picard group fits into an exact sequence

The fact that the rank of NS(V) is finite is Francesco Severi's theorem of the base; the rank is the Picard number of V, often denoted ρ(V). Geometrically NS(V) describes the algebraic equivalence classes of divisors on V; that is, using a stronger, non-linear equivalence relation in place of linear equivalence of divisors, the classification becomes amenable to discrete invariants. Algebraic equivalence is closely related to numerical equivalence, an essentially topological classification by intersection numbers.

Relative Picard scheme

Let f: XS be a morphism of schemes. The relative Picard functor (or relative Picard scheme if it is a scheme) is given by:[2] for any S-scheme T,

where is the base change of f and fT * is the pullback.

We say an L in has degree r if for any geometric point sT the pullback of L along s has degree r as an invertible sheaf over the fiber Xs (when the degree is defined for the Picard group of Xs.)

See also

Notes

References

  • Grothendieck, A. (1962), V. Les schémas de Picard. Théorèmes d'existence, Séminaire Bourbaki, t. 14: année 1961/62, exposés 223-240, no. 7, Talk no. 232, pp. 143–161
  • Grothendieck, A. (1962), VI. Les schémas de Picard. Propriétés générales, Séminaire Bourbaki, t. 14: année 1961/62, exposés 223-240, no. 7, Talk no. 236, pp. 221–243
  • Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052
  • Igusa, Jun-Ichi (1955), "On some problems in abstract algebraic geometry", Proc. Natl. Acad. Sci. U.S.A., 41 (11): 964–967, Bibcode:1955PNAS...41..964I, doi:10.1073/pnas.41.11.964, PMC 534315, PMID 16589782
  • Kleiman, Steven L. (2005), "The Picard scheme", Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Providence, R.I.: American Mathematical Society, pp. 235–321, arXiv:math/0504020, Bibcode:2005math......4020K, MR 2223410
  • Mumford, David (1966), Lectures on Curves on an Algebraic Surface, Annals of Mathematics Studies, vol. 59, Princeton University Press, ISBN 978-0-691-07993-6, MR 0209285, OCLC 171541070
  • Mumford, David (1970), Abelian varieties, Oxford: Oxford University Press, ISBN 978-0-19-560528-0, OCLC 138290

Read other articles:

Letnan Kolonel TNI (Purn.) Teuku Abdul Hamid Azwar (23 Oktober 1916 – 7 Oktober 1996)[1][2] adalah seorang pejuang kemerdekaan Indonesia yang berasal dari Aceh. Ia berjuang di bidang strategi militer yang lihai dalam penyediaan logistik. Riwayat Hidup Teuku Abdul Hamid Azwar suami dari Cut Nyak Manyak Keumala Putri (Cut Nyak Djariah) yang selalu memotivasi dan mengingatkan suaminya agar tetap berada di jalur perjuangan yang benar. Ketika Teuku Hamid Azwar henda...

 

Pour les articles homonymes, voir Expérience (homonymie). Expérience du cerf-volant de Benjamin Franklin. Les méthodes expérimentales scientifiques consistent à tester la validité d'une hypothèse, en reproduisant un phénomène (souvent en laboratoire) et en faisant varier un paramètre. Le paramètre que l'on fait varier est impliqué dans l'hypothèse. Le résultat de l'expérience valide ou non l'hypothèse. La démarche expérimentale est appliquée dans les recherches dans des sc...

 

Ness Ziona נֵס צִיּוֹנָה Nes Tziyona Lambang Ness ZionaDistrikTengahDidirikan1883Pemerintahan • JenisKota (sejak 1992) • Kepala DaerahYossi ShvoLuas • Total15.579 dunams (15,579 km2 or 6,015 sq mi)Populasi (2009)[1] • Total38.100 • Kepadatan2,4/km2 (6,3/sq mi) Ness Ziona (Ibrani: נֵס צִיּוֹנָה, Nes Tziyona) adalah sebuah kota di bagian tengah Israel yang dibentuk...

Jean Delannoy Jean Delannoy (Noisy-le-Sec, 12 gennaio 1908 – Guainville, 18 giugno 2008) è stato un regista, sceneggiatore e montatore francese, molto apprezzato nel suo paese e all'estero. Vinse il Grand Prix du Festival al Festival di Cannes 1946 con il film Sinfonia pastorale[1]. In seguito presentò in concorso al Festival anche Risorgere per amare (1947)[2] e Maria Antonietta, regina di Francia (1955) e partecipò come giurato all'edizione del 1973. Nel 1986 fu insigni...

 

Независимое королевствоКоролевство сербов, хорватов и словенцевсербохорв. Краљевина Срба, Хрвата и Словенаца / Kraljevina Srba, Hrvata i Slovenacaсерб. Краљевина Срба, Хрвата и Словенацахорв. Kraljevina Srba, Hrvata i Slovenacaсловен. Kraljevina Srbov, Hrvatov in Slovencevбосн. Kraljevstvo Srba, Hrvata i Slovenacaчерног. Краљевина С...

 

Chemical compound PSB-SB-1202Identifiers IUPAC name 7-pentyl-5-methoxy-3-(2-methoxybenzyl)-2H-chromen-2-one CAS Number1399049-60-5PubChem CID70677953ChemSpider28668367Chemical and physical dataFormulaC23H26O4Molar mass366.457 g·mol−13D model (JSmol)Interactive image SMILES O=C1C(CC2=C(OC)C=CC=C2)=CC3=C(C=C(CCCCC)C=C3OC)O1 InChI InChI=1S/C23H26O4/c1-4-5-6-9-16-12-21(26-3)19-15-18(23(24)27-22(19)13-16)14-17-10-7-8-11-20(17)25-2/h7-8,10-13,15H,4-6,9,14H2,1-3H3Key:VZYCAUIYIZSPQY-UHFFFAOYS...

Famili E (keluarga tekstual E) adalah suatu kelompok tekstual  naskah Perjanjian Baru.Tergolong sebagai salah satu keluarga tekstual jenis Bizantium teks-tipe, merupakan salah satu keluarga awal primer jenis teks Bizantin. Nama keluarga ini berasal dari simbol Codex Basilensis, naskah utama dari dari keluarga ini, yang diberi simbol E (von Soden: Ki). Deskripsi Hermann von Soden menemukan keluarga ini dan memberi simbol Ki. Menurutnya merupakan salah satu keluarga awal jenis teks Bizanti...

 

Les six degrés de liberté dans un espace à trois dimensions : trois de translation et trois de rotation. Par convention les translations sont positives dans les directions Droite, Avant, et Haut (axes Ox, Oy et Oz). Chacun des mots Tangage (rotation autour de Ox), Roulis (autour de Oy) et Lacet (autour de Oz) a été placé près de la flèche indiquant le sens de rotation positif (trièdre direct Oxyz). Ces trois derniers termes sont notamment employés en aéronautique. Ne doit pas ...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

This article was written in February 2010 and has only been partially updated since then, most recently in December 2013. Please feel free to further update it Water supply and sanitation in TanzaniaThe flag of TanzaniaDataWater coverage (broad definition)(improved water source) 52% (2007, household survey),[1] 50% ('at least basic' definition,2017, JMP)[2]Sanitation coverage (broad definition)(improved sanitation) 33% (2006, household survey),[1] 24% ('at least basic'...

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

 

UK charitable organisation This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (February 2017) (Learn how and when to remove this message) Christians Against PovertyFounded1996FounderJohn KirkbyTypeChristian CharityPurposeDebt counselling[1]Origins United KingdomWebsitecapuk.org Christians Against Povert...

Province of Afghanistan The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (January 2022) (Learn how and when to remove this message) Province in AfghanistanKapisa کاپیساProvinceA road in the Tagab District of Kapisa ProvinceMap of Afghanistan with Kapisa highlightedCoordinates (Capital): 35°00′N 69°42′E / 35.0°N 69.7°E / 35.0; 69.7Country&...

 

French rolling stock manufacturer Alstom SAAlstom headquartersFormerlyAlsthom, GEC AlsthomCompany typePublicTraded asEuronext Paris: ALOCAC 40 componentISINFR0010220475 IndustryRail transportFounded1928; 96 years ago (1928)HeadquartersSaint-Ouen-sur-Seine, FranceKey peopleHenri Poupart-Lafarge (Chairman and CEO)ProductsRailway vehicles, service and systems, signalling, electric road systemsRevenue €15.47 billion (2022)Operating income €373 million (2022)Net inc...

 

2001 greatest hits album by Olivia Newton-JohnThe Definitive CollectionGreatest hits album by Olivia Newton-JohnReleased2001 (Europe 2002)GenrePopLength78:49LabelSony BMGOlivia Newton-John chronology Magic: The Very Best of Olivia Newton-John(2001) The Definitive Collection(2001) 2(2002) The Definitive Collection is a compilation of the greatest hits by Olivia Newton-John, an internationally recognised singer and actress. The album was released in 2001 by BMG Records and featured 22 ...

Indo-Aryan language native to India and Nepal Bhojpuriभोजपुरी · 𑂦𑂷𑂔𑂣𑂳𑂩𑂲The word Bhojpuri in the Devanagari scriptNative toIndia and NepalRegionBhojpur-PurvanchalEthnicityBhojpuriyaNative speakers51 million, partial count (2011 census)[1](additional speakers counted under Hindi)Language familyIndo-European Indo-IranianIndo-AryanEasternBihariBhojpuriEarly formsMagadhi Prakrit Magadhan Apabhraṃśa Abahattha Dialects Northern Standard Bhojpu...

 

British non-profit organization Quality Assurance Agency for Higher EducationAbbreviationQAAFormation1997Legal statusNon-profit organisationPurposeMaintaining and enhancing academic quality and standards in UK tertiary educationLocationSouthgate House, Southgate Street, GloucesterRegion served UKChief ExecutiveVicki StottMain organQAA BoardWebsiteqaa.ac.uk The Quality Assurance Agency for Higher Education (usually referred to simply as the Quality Assurance Agency or QAA) is the United Kingdo...

 

Animal welfare organization AbbreviationCIWFFormation1967; 57 years ago (1967)FounderPeter RobertsTypeCharityRegistration no.1095050PurposePromoting animal welfareLocationGodalming, EnglandRegion Worldwide[1]MethodsAdvocacy, public education, researchChief ExecutivePhilip LymberyStaff 102Volunteers 4Websitewww.ciwf.org.uk Compassion in World Farming (CIWF) is a campaigning and lobbying animal welfare organisation. It campaigns against the live export of animals,...

Universitas SilpakornมหาวิทยาลัยศิลปากรGanesa, lambang Universitas SilpakornMotoArs longa, vita brevisMoto dalam bahasa IndonesiaSeni itu panjang, sedangkan hidup itu pendek.JenisUniversitas negeriDidirikan12 Oktober 1943AfiliasiASAIHLRektorAsisten Profesor Wanchai SutanantaJumlah mahasiswa25.210 (2016)Sarjana21.942 (2016)Magister2.483 (2016)Doktor785 (2016)LokasiBangkokNakhon PathomPhetchaburiWarna  Hijau-tirusSitus webwww.su.ac.thUniversitas Sil...

 

U-12 Softball World CupCurrent season, competition or edition: 2021 U-12 Softball World CupFounded2019; 5 years ago (2019)Organising bodyWBSCNo. of teams5 (finals)RegionInternationalMost recentchampion(s) Chinese Taipei (2nd title)Most titles Chinese Taipei(2 titles)Official websiteWBSC.org Tournaments 2019 2021 The U-12 Softball World Cup is an international softball tournament for male and female players between age 10-12,[1] and is the most elite and hig...