MiR-338

miR-338
Conserved secondary structure of miR-338 microRNA precursor
Identifiers
SymbolmiR-338
Alt. SymbolsMIR338
RfamRF00686
miRBaseMI0000814
miRBase familyMIPF0000097
NCBI Gene442906
HGNC31775
OMIM614059
RefSeqNR_029897
Other data
RNA typemiRNA
Domain(s)Mammalia
GO0035195
SO0001244
LocusChr. 17 q25.3
PDB structuresPDBe

miR-338 is a family of brain-specific microRNA precursors found in mammals, including humans.[1] The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer.[2] This sequence then associates with RISC which effects RNA interference.[3]

miR-338 is located in an intronic region within the gene for apoptosis-associated tyrosine kinase (AATK). It has been predicted that it may downregulate genes which have a downstream negative effect on AATK expression.[4]

Function

miR-338 is a brain-specific miRNA which regulates the expression of cytochrome c oxidase IV (COX4).[1][5] The mature miR-338 miRNA sequence is complementary to a short section of the 3' untranslated region of COX4 mRNA. This mRNA sequence is presented atop a stem-loop structure, indicating it is accessible to miRNA processing.[5]

Applications

miR-338 is dysregulated in neuroblastoma, and could potentially be implemented as a biomarker or future therapeutic agent.[6] miR-338 has also been linked with hepatocellular carcinoma, and a large-scale diagnostic test has been suggested involving measurement of miR-338 expression in tissue samples.[7] Furthermore, miR-338 is one of seven microRNAs whose expression profiles can be combined to give a prediction of the probability of survival of a patient with gastric cancer.[8]

References

  1. ^ a b Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE, Kaplan BB (Nov 2008). "MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons". The Journal of Neuroscience. 28 (47): 12581–90. doi:10.1523/JNEUROSCI.3338-08.2008. PMC 3496265. PMID 19020050.
  2. ^ Ambros V (Dec 2001). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–6. doi:10.1016/S0092-8674(01)00616-X. PMID 11779458. S2CID 14574186.
  3. ^ Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (Nov 2005). "Human RISC couples microRNA biogenesis and posttranscriptional gene silencing". Cell. 123 (4): 631–40. doi:10.1016/j.cell.2005.10.022. PMID 16271387. S2CID 16973870.
  4. ^ Barik S (Sep 2008). "An intronic microRNA silences genes that are functionally antagonistic to its host gene". Nucleic Acids Research. 36 (16): 5232–41. doi:10.1093/nar/gkn513. PMC 2532712. PMID 18684991.
  5. ^ a b Kaplan BB, Gioio AE, Hillefors M, Aschrafi A (2009). "Axonal protein synthesis and the regulation of local mitochondrial function". Cell Biology of the Axon. Results and Problems in Cell Differentiation. Vol. 48. pp. 225–42. doi:10.1007/400_2009_1. ISBN 978-3-642-03018-5. PMC 2786086. PMID 19343315.
  6. ^ Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR, Scalia M, Magro G, Di Pietro C, Romani M, Purrello M (Oct 2010). "MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis". Journal of Molecular Medicine. 88 (10): 1041–53. doi:10.1007/s00109-010-0643-0. PMID 20574809. S2CID 22215883.
  7. ^ Huang XH, Wang Q, Chen JS, Fu XH, Chen XL, Chen LZ, Li W, Bi J, Zhang LJ, Fu Q, Zeng WT, Cao LQ, Tan HX, Su Q (Aug 2009). "Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated". Hepatology Research. 39 (8): 786–94. doi:10.1111/j.1872-034X.2009.00502.x. PMID 19473441. S2CID 11863697.
  8. ^ Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D (May 2010). "Survival prediction of gastric cancer by a seven-microRNA signature". Gut. 59 (5): 579–85. doi:10.1136/gut.2008.175497. PMID 19951901. S2CID 25196666.

Further reading