Acting in the hypothalamus, α-MSH suppresses appetite.[4]: 419 α-MSH secreted in the hypothalamus also contributes to sexual arousal.[6]
In amphibians
In some animals (such as the claw-toed frog Xenopus laevis) production of MSH is increased when the animal is in a dark location. This causes pigment to be dispersed in pigment cells in the toad's skin, making it become darker, and harder for predators to spot. The pigment cells are called melanophores and therefore, in amphibians, the hormone is often called melanophore-stimulating hormone.
An increase in MSH will cause darker skin in humans too. Pigmentation increases in humans during pregnancy; though the exact endocrine cause is not known, α- and β-melanocyte-stimulating hormone are thought to be involved.[7]Cushing's disease due to excess adrenocorticotropic hormone (ACTH) may also result in hyperpigmentation, such as acanthosis nigricans in the axilla. Most people with primary Addison's disease have darkening (hyperpigmentation) of the skin, including areas not exposed to the sun; characteristic sites are skin creases (e.g. of the hands), nipple, and the inside of the cheek (buccal mucosa), new scars become hyperpigmented, whereas older ones do not darken. This occurs because MSH and ACTH share the same precursor molecule, proopiomelanocortin (POMC).
Different levels of MSH are not the major cause of variation in skin colour. However, in many red-headed people, and other people who do not tan well, there are variations in their hormone receptors, causing them to not respond to MSH in the blood.
The different forms of MSH belong to a group called the melanocortins. This group includes ACTH, α-MSH, β-MSH, and γ-MSH; these peptides are all cleavage products of a large precursor peptide called proopiomelanocortin (POMC). α-MSH is the most important melanocortin for pigmentation.
An additional analogue called melanotan II causes enhanced libido and erections in most male test subjects and arousal with corresponding genital involvement in most female test subjects.[9]Bremelanotide (formerly PT-141) which stemmed from melanotan II research is currently under development for its aphrodisiac effects. These effects are mediated by actions in the hypothalamus on neurons that express MC3 and MC4 receptors.
Millington GW (May 2006). "Proopiomelanocortin (POMC): the cutaneous roles of its melanocortin products and receptors". Clinical and Experimental Dermatology. 31 (3): 407–412. doi:10.1111/j.1365-2230.2006.02128.x. PMID16681590. S2CID25213876.