Medial magma

In abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) that satisfies the identity

(xy) • (uv) = (xu) • (yv),

or more simply,

xyuv = xuyv

for all x, y, u and v, using the convention that juxtaposition denotes the same operation but has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic, etc.[1]

Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid. The "only if" direction is the Eckmann–Hilton argument. Another class of semigroups forming medial magmas are normal bands.[2] Medial magmas need not be associative: for any nontrivial abelian group with operation + and integers mn, the new binary operation defined by xy = mx + ny yields a medial magma that in general is neither associative nor commutative.

Using the categorical definition of product, for a magma M, one may define the Cartesian square magma M × M with the operation

(x, y) • (u, v) = (xu, yv).

The binary operation of M, considered as a mapping from M × M to M, maps (x, y) to xy, (u, v) to uv, and (xu, yv)  to (xu) • (yv) . Hence, a magma M is medial if and only if its binary operation is a magma homomorphism from M × M to M. This can easily be expressed in terms of a commutative diagram, and thus leads to the notion of a medial magma object in a category with a Cartesian product. (See the discussion in auto magma object.)

If f and g are endomorphisms of a medial magma, then the mapping fg defined by pointwise multiplication

(fg)(x) = f(x) • g(x)

is itself an endomorphism. It follows that the set End(M) of all endomorphisms of a medial magma M is itself a medial magma.

Bruck–Murdoch–Toyoda theorem

The Bruck–Murdoch–Toyoda theorem provides the following characterization of medial quasigroups. Given an abelian group A and two commuting automorphisms φ and ψ of A, define an operation on A by

xy = φ(x) + ψ(y) + c,

where c some fixed element of A. It is not hard to prove that A forms a medial quasigroup under this operation. The Bruck–Murdoch-Toyoda theorem states that every medial quasigroup is of this form, i.e. is isomorphic to a quasigroup defined from an abelian group in this way.[3] In particular, every medial quasigroup is isotopic to an abelian group.

The result was obtained independently in 1941 by Murdoch and Toyoda.[4][5] It was then rediscovered by Bruck in 1944.[6]

Generalizations

The term medial or (more commonly) entropic is also used for a generalization to multiple operations. An algebraic structure is an entropic algebra[7] if every two operations satisfy a generalization of the medial identity. Let f and g be operations of arity m and n, respectively. Then f and g are required to satisfy

Nonassociative examples

A particularly natural example of a nonassociative medial magma is given by collinear points on elliptic curves. The operation xy = −(x + y) for points on the curve, corresponding to drawing a line between x and y and defining xy as the third intersection point of the line with the elliptic curve, is a (commutative) medial magma which is isotopic to the operation of elliptic curve addition.

Unlike elliptic curve addition, xy is independent of the choice of a neutral element on the curve, and further satisfies the identities x • (xy) = y. This property is commonly used in purely geometric proofs that elliptic curve addition is associative.

Citations

References

  • Murdoch, D.C. (May 1941), "Structure of abelian quasi-groups", Trans. Amer. Math. Soc., 49 (3): 392–409, doi:10.1090/s0002-9947-1941-0003427-2, JSTOR 1989940
  • Toyoda, K. (1941), "On axioms of linear functions", Proc. Imp. Acad. Tokyo, 17 (7): 221–227, doi:10.3792/pia/1195578751
  • Bruck, R.H. (January 1944), "Some results in the theory of quasigroups", Trans. Amer. Math. Soc., 55 (1): 19–52, doi:10.1090/s0002-9947-1944-0009963-x, JSTOR 1990138
  • Yamada, Miyuki (1971), "Note on exclusive semigroups", Semigroup Forum, 3 (1): 160–167, doi:10.1007/BF02572956
  • Ježek, J.; Kepka, T. (1983). "Medial groupoids". Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd. 93 (2): 93pp. Archived from the original on 2011-07-18.
  • Davey, B. A.; Davis, G. (1985). "Tensor products and entropic varieties". Algebra Universalis. 21: 68–88. doi:10.1007/BF01187558.
  • Kuzʹmin, E. N.; Shestakov, I. P. (1995). "Non-associative structures". Algebra VI. Encyclopaedia of Mathematical Sciences. Vol. 6. Berlin, New York: Springer-Verlag. pp. 197–280. ISBN 978-3-540-54699-3.

Read other articles:

Cengaver KatrancıLahir1964Meninggal30 Oktober 1972Berlin Timur, GDRSebab meninggalTenggelam di SpreeMakamAnkara, Turki Cengaver Katrancı[1] (1964 – 30 Oktober 1972)[2] adalah seorang bocah Turki, yang tinggal di Berlin Barat, distrik Kreuzberg. Ia tenggelam di sungai Spree, yang pada masa itu berada di perbatasan antara Berlin Timur dan Barat. Dalam pandangan keadaan sekitar kecelakaan tersebut, Cengaver Katrancı merupakan salah satu korban termuda dari keberadaan T...

 

Bambangan hitam Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Pelecaniformes Famili: Ardeidae Genus: Dupetor Spesies: D. flavicollis Nama binomial Dupetor flavicollis(Latham, 1790) Sinonim Dupetor flavicollis Bambangan hitam (Dupetor flavicollis) adalah spesies burung bambangan dalam famili Ardeidae. Deskripsi Ini adalah spesies yang cukup besar dengan panjang 58 cm (23 inci), dan merupakan bambangan te...

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

Kerusakan tornado di Illinois dapat dianggap murka Tuhan Murka Tuhan atau murka Allah[1] adalah sebuah bencana alam di luar kendali manusia, seperti gempa bumi atau tsunami, dimana tak seorang pun dapat memegang tanggung jawab. Sebaliknya, peristiwa politik atau buatan manusia luar biasa lainnya dianggap sebagai force majeure. Dalam teologi Lihat pula: Providensi Ilahi Dalam Pemberontakan Korah, sebuah cukil kayu tahun 1860 karya Julius Schnorr von Karolsfeld, sebuah lubang runtuhan t...

 

iNews MakassarPT Sun Televisi MakassarMakassar, Sulawesi SelatanIndonesiaSaluranDigital: 40 UHFSloganInspiring and InformativePemrogramanBahasaBahasa IndonesiaBahasa MakassarJaringan televisiiNewsKepemilikanPemilikMedia Nusantara Citra (2009-2023)[1]iNews Media Group (2023-sekarang)RiwayatSiaran perdana14 Januari 2009Bekas tanda panggilSUN TV MakassariNews TV MakassarBekas nomor kanal31 UHF (analog)51 UHF (analog)Informasi teknisOtoritas perizinanKementerian Komunikasi dan Informatik...

 

Federalist Paper by John Jay Federalist No. 3 John Jay, author of Federalist No. 3AuthorJohn JayOriginal titleThe Same Subject Continued: Concerning Dangers from Foreign Force and InfluenceCountryUnited StatesLanguageEnglishSeriesThe FederalistPublisherThe Independent JournalPublication dateNovember 3, 1787Media typeNewspaperPreceded byFederalist No. 2 Followed byFederalist No. 4 TextFederalist No. 3 at Wikisource Federalist No. 3, titled The Same Subject Contin...

Pour les articles homonymes, voir Pharaon (homonymie). Pharaon Pr-ˁȝ Ramsès II assis sur son trône, tenant le sceptre Héqa et coiffé du khépresh - XIXe dynastie - Musée égyptologique de Turin. Statue fragmentaire de Thoutmôsis III - XVIIIe dynastie - Musée de Louxor. Tête du pharaon Houni - IIIe dynastie - Brooklyn Museum. Le pharaon (de l'égyptien ancien : per-aâ « grande maison ») est le roi et reine de l'Égypte antique. Les noms de 345&#...

 

American police officer and whistleblower (born 1936) Frank SerpicoSerpico in 2013BornFrancesco Vincent Serpico (1936-04-14) April 14, 1936 (age 88)Brooklyn, New York City, U.S.NationalityAmerican, ItalianOther namesPacoKnown forWhistleblower on police corruption and subsequent shootingPolice careerDepartmentNew York Police DepartmentService years1959–1972StatusRetiredRankDetectiveBadge no.19076[1]Shield no.761AwardsNYPD Medal of HonorOther workLec...

 

Space observatory For the Japanese train service, see Hakuchō (train). HakuchōMission typeX Ray Celestial ObservationOperatorInstitute of Space and Astronautical Science (Japan)COSPAR ID1979-014A SATCAT no.11272 Spacecraft propertiesLaunch mass96.0 kilograms (211.6 lb)Dimensions⌀760mm×650mm Start of missionLaunch date21 February 1979 UTCRocketM-3C-Rocket (mission 4)Launch siteUchinoura Space Center, Kagoshima Prefecture, Japan End of missionDecay dateApril 15, 1985   Hakucho (a...

Large illustrated hardback book Coffee table book on a coffee table A coffee table book, also known as a cocktail table book[citation needed], is an oversized, usually hard-covered book whose purpose is for display on a table intended for use in an area in which one entertains guests and from which it can serve to inspire conversation or pass the time. Subject matter is predominantly non-fiction and pictorial (a photo-book). Pages consist mainly of photographs and illustrations, accom...

 

Genus of mammals Howler monkeys[1] Brown howler monkey Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Family: Atelidae Subfamily: AlouattinaeTrouessart, 1897 (1825) Genus: AlouattaLacépède, 1799 Type species Simia belzebulLinnaeus, 1766 Species See text Alouatta distribution Synonyms Mycetes Illiger, 1811 Stentor É. Geoffroy, 1812 Howler monkeys (genus Alouatta, monotypic in...

 

City in Texas, United StatesNash, TexasCityLocation of Nash, TexasCoordinates: 33°26′30″N 94°7′31″W / 33.44167°N 94.12528°W / 33.44167; -94.12528CountryUnited StatesStateTexasCountyBowieGovernment • TypeCouncil-Manager • City CouncilMayor Robert Bunch Mayor Pro Tem Cranford Graves Charles Underwood John Watwoodi Dale Vickers Brenda Jakubowski • City ManagerDoug BowersArea[1] • Total4.48 sq m...

Happy Tree FriendsGenreKomedi gelapAksiAnimasi dewasaJagalPembuatKenn NavarroAubrey AnkrumRhode MontijoPengembangRhode MontijoKenn NavarroWarren GraffPengisi suaraKenn NavarroRhode MontijoDavid WinnDana BelbenEllen ConnellWarren GraffAubrey AnkrumLiz StuartNica LorberJeff BiancalanaPeter HerrmannMichael Lippy LipmanFrancis CarrPenggubah lagu temarj ElevenNegara asal Amerika SerikatBahasa asliInggrisJmlh. musim4 musim (Internet)1 musim (serial televisi)Jmlh. episode89 episode (Internet)1...

 

Questa voce sull'argomento calciatori francesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Gérard Soler Nazionalità  Francia Altezza 176 cm Peso 76 kg Calcio Ruolo Attaccante Termine carriera 1988 CarrieraGiovanili  PoissySquadre di club1 1972-1978 Sochaux161 (69)1978-1979 Monaco28 (9)1979-1982 Bordeaux91 (16)1982-1984 Tolosa58 (19)1984-1985 Strasburgo32 (6)1985...

 

Fictional continent in Forgotten Realms Faerûn (/feɪˈruːn/) is a fictional continent and the primary setting of the Dungeons & Dragons world of Forgotten Realms. It is described in detail in several editions of the Forgotten Realms Campaign Setting (first published in 1987 by TSR, Inc.) with the most recent being the 5th edition from Wizards of the Coast,[1][2] and various locales and aspects are described in more depth in separate campaign setting books.[3] Ar...

Highway in the United States U.S. Route 23US 23 highlighted in redRoute informationLength1,435.17 mi[1] (2,309.68 km)Existed1926[2]–presentMajor junctionsSouth end US 1 / US 17 in Jacksonville, FLMajor intersections I-95 in Jacksonville, FL I-16 / I-75 in Macon, GA I-20 / I-85 in Atlanta, GA I-40 near Asheville, NC I-81 near Kingsport, TN I-64 near Ashland, KY I-70 / I-71 in Columbus, OH I-75 in Perrysburg, OH I-94 in An...

 

Regional intergovernmental organisation Caricom redirects here. For the airline, see Caricom Airways. Caribbean Community Dutch:Caribische GemeenschapFrench:Communauté caribéenneSpanish:Comunidad del Caribe FlagAnthem: Celebrating CARICOM[1]  Full members   Associate members   ObserversSeat of SecretariatGeorgetown, GuyanaLargest cityPort-au-Prince, HaitiOfficial languagesEnglish[2]Working languageDutchEnglishFrenchSpanish[3]&#...

 

Neighborhood of Detroit in Wayne, MichiganChinatownNeighborhood of DetroitMGM Grand Detroit in the location of the first Detroit ChinatownCoordinates: 42°19′53″N 83°02′45″W / 42.33139°N 83.04583°W / 42.33139; -83.04583Country United States of AmericaState MichiganCounty WayneCity DetroitZIP Code48202Area codeArea code 313 Detroit has had at least two locations that were once called Chinatown, with the first being in a downtown location at Third Av...

Questa voce sull'argomento scrittori britannici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jim Crace nel 2009 Jim Crace (St Albans, 1º marzo 1946) è uno scrittore inglese vincitore del National Book Critics Circle Award nel 2000 per il romanzo Una storia naturale dell'amore. Indice 1 Biografia 2 Opere 2.1 Racconti 2.2 Romanzi 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Nato nel 1946...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...