Eckmann–Hilton argument

In mathematics, the Eckmann–Hilton argument (or Eckmann–Hilton principle or Eckmann–Hilton theorem) is an argument about two unital magma structures on a set where one is a homomorphism for the other. Given this, the structures are the same, and the resulting magma is a commutative monoid. This can then be used to prove the commutativity of the higher homotopy groups. The principle is named after Beno Eckmann and Peter Hilton, who used it in a 1962 paper.

The Eckmann–Hilton result

Let be a set equipped with two binary operations, which we will write and , and suppose:

  1. and are both unital, meaning that there are identity elements and of such that and , for all .
  2. for all .

Then and are the same and in fact commutative and associative.

Remarks

The operations and are often referred to as monoid structures or multiplications, but this suggests they are assumed to be associative, a property that is not required for the proof. In fact, associativity follows. Likewise, we do not have to require that the two operations have the same neutral element; this is a consequence.

Proof

First, observe that the units of the two operations coincide: .

Now, let . Then . This establishes that the two operations coincide and are commutative.

For associativity, .

Two-dimensional proof

The above proof also has a "two-dimensional" presentation that better illustrates the application to higher homotopy groups. For this version of the proof, we write the two operations as vertical and horizontal juxtaposition, i.e., and . The interchange property can then be expressed as follows:

For all , , so we can write without ambiguity.

Let and be the units for vertical and horizontal composition respectively. Then , so both units are equal.

Now, for all , , so horizontal composition is the same as vertical composition and both operations are commutative.

Finally, for all , , so composition is associative.

Remarks

If the operations are associative, each one defines the structure of a monoid on , and the conditions above are equivalent to the more abstract condition that is a monoid homomorphism (or vice versa). An even more abstract way of stating the theorem is: If is a monoid object in the category of monoids, then is in fact a commutative monoid.

It is important that a similar argument does NOT give such a trivial result in the case of monoid objects in the categories of small categories or of groupoids. Instead the notion of group object in the category of groupoids turns out to be equivalent to the notion of crossed module. This leads to the idea of using multiple groupoid objects in homotopy theory.

More generally, the Eckmann–Hilton argument is a special case of the use of the interchange law in the theory of (strict) double and multiple categories. A (strict) double category is a set, or class, equipped with two category structures, each of which is a morphism for the other structure. If the compositions in the two category structures are written then the interchange law reads

whenever both sides are defined. For an example of its use, and some discussion, see the paper of Higgins referenced below. The interchange law implies that a double category contains a family of abelian monoids.

The history in relation to homotopy groups is interesting. The workers in topology of the early 20th century were aware that the nonabelian fundamental group was of use in geometry and analysis; that abelian homology groups could be defined in all dimensions; and that for a connected space, the first homology group was the fundamental group made abelian. So there was a desire to generalise the nonabelian fundamental group to all dimensions.

In 1932, Eduard Čech submitted a paper on higher homotopy groups to the International Congress of Mathematics at Zürich. However, Pavel Alexandroff and Heinz Hopf quickly proved these groups were abelian for , and on these grounds persuaded Čech to withdraw his paper, so that only a small paragraph appeared in the Proceedings. It is said that Witold Hurewicz attended this conference, and his first work on higher homotopy groups appeared in 1935.[citation needed] Thus the dreams of the early topologists have long been regarded as a mirage.[citation needed]

Cubical higher homotopy groupoids are constructed for filtered spaces in the book Nonabelian algebraic topology cited below, which develops basic algebraic topology, including higher analogues to the Seifert–Van Kampen theorem, without using singular homology or simplicial approximation.

References

  • John Baez: Eckmann–Hilton principle (week 89)
  • John Baez: Eckmann–Hilton principle (week 100)
  • Eckmann, B.; Hilton, P. J. (1962), "Group-like structures in general categories. I. Multiplications and comultiplications", Mathematische Annalen, 145 (3): 227–255, doi:10.1007/bf01451367, MR 0136642.
  • Hurewicz, W. (1935), Beitrage zur Topologie der Deformationen, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 38, pp. 112–119, 521–528.
  • Brown, R.; Higgins, P. J.; Sivera, R. (2011), Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics, vol. 15, p. 703, arXiv:math/0407275, MR 2841564.
  • Higgins, P. J. (2005), "Thin elements and commutative shells in cubical $\omega$-categories", Theory and Application of Categories, 14: 60–74, MR 2122826.
  • James, I.M. (1999), History of Topology, North Holland
  • Murray Bremner and Sara Madariaga. (2014) Permutation of elements in double semigroups

Read other articles:

Šumadija, region geografis Peta distrik Šumadija Šumadija (Шумадија) adalah region geografis di Serbia. Wilayah ini dipenuhi hutan, yang merupakan asal nama region ini (Šuma - hutan). Kota Kragujevac adalah pusat wilayah ini, dan pusat administratif Distrik Šumadija di Serbia Tengah. Pranala luar Stragari - village in Šumadija Diarsipkan 2009-02-01 di Wayback Machine. [1] Diarsipkan 2017-10-01 di Wayback Machine. Artikel bertopik geografi atau tempat Serbia ini adalah sebuah rin...

 

Sungai Mutiara (珠江) Zhu Jiang Sungai Mutiara di Guangzhou Countries Tiongkok, Vietnam Provinsi Yunnan, Guizhou, Guangxi, Guangdong, Hong Kong, Makau, Cao Bằng, Lạng Sơn Sumber various sources of its tributaries Muara Laut Tiongkok Selatan Panjang 2.400 km (1.491 mi) [1] DAS 453.700 km2 (175.175 sq mi) [2] Debit air  - rerata 9.500 m3/s (335.489 cu ft/s) [3] Peta aliran Sungai Mutiara di Ti...

 

CBS/CW affiliate in Hattiesburg, Mississippi This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: WHLT – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this template message) WHLTSemi-satellite of WJTV, Jackson, MississippiHattiesburg–Laurel, MississippiUnited StatesCit...

Cet article est une ébauche concernant le droit français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Article 87 de la Constitution du 4 octobre 1958 Données clés Présentation Pays France Langue(s) officielle(s) Français Type Article de la Constitution Adoption et entrée en vigueur Législature XIIIe législature de la Cinquième République française Gouvernement François Fillon (2e) Promulgation 2...

 

Kedutaan Besar Republik Indonesia di Abu DhabiKoordinat24°26′06″N 54°22′17″E / 24.435°N 54.371519°E / 24.435; 54.371519Lokasi Abu Dhabi, Uni Emirat ArabAlamatZone 2, Sector 79, Villa No. 819Sultan bin Zayed Street(Street 32)Al Bateen Area, Abu DhabiUni Emirat ArabDuta BesarHusin BagisSitus webkemlu.go.id/abudhabi/id Kedutaan Besar Republik Indonesia di Abu Dhabi (KBRI Abu Dhabi) adalah misi diplomatik Republik Indonesia untuk Uni Emirat Arab (UEA).[1 ...

 

Peta wilayah Komune Canicattì (merah) di Provinsi Agrigento (emas), Sisilia, Italia. Canicattì commune di Italia Canicattì (it) Tempat Negara berdaulatItaliaRegion otonom dengan status khususSiciliaProvinsi di ItaliaProvinsi Agrigento NegaraItalia Ibu kotaCanicattì PendudukTotal34.449  (2023 )GeografiLuas wilayah91,86 km² [convert: unit tak dikenal]Ketinggian465 m Berbatasan denganMontedoro (en) Caltanissetta Delia (en) Castrofilippo Racalmuto Naro Serradifalco (en) Ravanusa Ca...

Questa voce sull'argomento esercizi commerciali è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Negozi duty-free presso l'Aeroporto Internazionale Ben Gurion di Tel Aviv, Israele Un duty-free shop (letteralmente «negozio senza imposte», in inglese), o semplicemente duty-free, è un negozio al dettaglio che non applica tutte le imposte locali o statali sulle merci in vendita. Questo genere di negozi si trova in zone franche come aeroporti, navi da cr...

 

Saint-Pierre-de-CernièrescomuneLocalizzazioneStato Francia Regione Normandia Dipartimento Eure ArrondissementBernay CantoneBreteuil TerritorioCoordinate48°57′N 0°31′E / 48.95°N 0.516667°E48.95; 0.516667 (Saint-Pierre-de-Cernières)Coordinate: 48°57′N 0°31′E / 48.95°N 0.516667°E48.95; 0.516667 (Saint-Pierre-de-Cernières) Superficie11,63 km² Abitanti237[1] (2009) Densità20,38 ab./km² Altre informazioniCod. posta...

 

American composer and conductor For other people named Samuel Adler, see Samuel Adler (disambiguation). Samuel AdlerBornSamuel Hans Adler (1928-03-04) 4 March 1928 (age 96)Mannheim, GermanyCitizenshipAmericanAlma materBoston University (BM)Harvard University (MA)Occupation(s)Composer, conductor, author, and professorYears active1952–2016Known forFounder of the Seventh Army Symphony OrchestraSpouses Carol Starker ​ ​(m. 1960; div. 198...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nurse on Wheels – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) 1963 British filmNurse on WheelsUK theatrical posterDirected byGerald ThomasWritten byJohn Burke (novel)Norman HudisProduced byPeter RogersFran...

 

Sebuah poster teatrikal untuk Rashomon karya Akira Kurosawa, yang terpilih menjadi film berbahasa asing terbaik yang dirilis di Amerika Serikat pada 1951, dan meraih Penghargaan Kehormatan. Jepang telah mewakilkan film-film pada Penghargaan Akademi untuk Film Berbahasa Asing Terbaik sejak pembuatan penghargaan tersebut. Penghargaan tersebut diadakan secara tahunan oleh Academy of Motion Picture Arts and Sciences untuk sebuah film durasi cerita yang dibuat di luar Amerika Serikat yang utamanya...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Candi Ronggeng adalah satu-satunya candi yang terletak di Kabupaten Ciamis.[1] Candi Ronggeng menjadi bagian dari sejarah daerah kawali, Ciungwanara dan kawasen.[2] Letak Candi Ronggeng berada di bagian timur dari sungai Ci Seel. Penemu...

この項目では、日本における称号または地位としての天皇について説明しています。 在位中の天皇の呼称の概説については「今上天皇」をご覧ください。 2019年(令和元年)5月1日より在位中の天皇については「徳仁」をご覧ください。 歴代天皇については「天皇の一覧」をご覧ください。 その他の「天皇」については「天皇 (曖昧さ回避)」をご覧ください。 日本天�...

 

千年紀: 2千年紀世紀: 14世紀 - 15世紀 - 16世紀十年紀: 1400年代 1410年代 1420年代 1430年代 1440年代 1450年代 1460年代 1470年代 1480年代 1490年代 大航海時代。大西洋を渡り新世界に到達したコロンブス。 マチュ・ピチュ遺跡。アンデス山麓に属するペルーのウルバンバ谷に沿いの尾根にある遺跡で標高2430mの高さにある。用途は未だ明らかでない所もあるが、15世紀に建造されたイ...

 

Ohioan high school athletic conference The Toledo City League is an Ohio High School Athletic Association (OHSAA) high school athletic conference that was formed in 1926 and comprises the six high schools in Toledo that are from Toledo Public Schools, along with one high school from Lima, Ohio. League membership beginning with the 2023-24 school year. Membership The current member schools of the conference are: The current member schools of the City League are in red (Lima Senior is not shown...

Rural municipality in Manitoba, Canada This article is about the rural municipality. For the city, see Thompson, Manitoba. Rural municipality in Manitoba, CanadaRural Municipality of ThompsonRural municipalityMiami Railway StationLocation of the RM of Thompson in ManitobaCoordinates: 49°22′37″N 98°14′21″W / 49.37694°N 98.23917°W / 49.37694; -98.23917CountryCanadaProvinceManitobaArea • Land531.24 km2 (205.11 sq mi)Population (...

 

Book by A. S. Byatt novel The Children's Book First editionAuthorA. S. ByattLanguageEnglishPublisherChatto & WindusPublication date2009Publication placeUnited KingdomMedia typePrint (Hardcover and Paperback)Pages675 ppISBN978-0-7011-8389-9 The Children's Book is a 2009 novel by British writer A. S. Byatt. It follows the adventures of several inter-related families, adults and children, from 1895 through World War I. Loosely based upon the life of children's writer E. Nesbit[1]...

 

Oscar ZariskiFonctionPrésidentAmerican Mathematical Society1969-1970Charles B. Morrey, Jr. (en)Nathan JacobsonBiographieNaissance 24 avril 1899KobrinDécès 4 juillet 1986 (à 87 ans)Brookline (Massachusetts)Sépulture Cimetière de Mount AuburnNoms de naissance Ошер Зарицкий, אשר זאַריצקיNationalité Italien puis américainFormation Université nationale Taras-Chevtchenko de Kiev (1918-1920)Université de Rome « La Sapienza » (1921-1924)Activités Mat...

Disambiguazione – Se stai cercando altri significati, vedi Rotondi (disambigua). Questa voce o sezione sull'argomento centri abitati della Campania non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Rotondicomune LocalizzazioneStato Italia Regione Campania Provincia Avellino AmministrazioneSindacoGiuseppe Ilario (lista civica) dal ...

 

Future partial solar eclipse Solar eclipse of September 2, 2054MapType of eclipseNaturePartialGamma1.0215Magnitude0.9793Maximum eclipseCoordinates71°42′N 82°18′W / 71.7°N 82.3°W / 71.7; -82.3Times (UTC)Greatest eclipse1:09:34ReferencesSaros155 (8 of 71)Catalog # (SE5000)9628 A partial solar eclipse will occur at the Moon's ascending node of orbit between Tuesday, September 1 and Wednesday, September 2, 2054,[1] with a magnitude of 0.9793. A solar eclips...