Irreversible process

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible,[1][2][3][4] although a phase transition at the coexistence temperature (e.g. melting of ice cubes in water) is well approximated as reversible.

In thermodynamics, a change in the thermodynamic state of a system and all of its surroundings cannot be precisely restored to its initial state by infinitesimal changes in some property of the system without expenditure of energy. A system that undergoes an irreversible process may still be capable of returning to its initial state. Because entropy is a state function, the change in entropy of the system is the same whether the process is reversible or irreversible. However, the impossibility occurs in restoring the environment to its own initial conditions. An irreversible process increases the total entropy of the system and its surroundings. The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not.

Intuitively, a process is reversible if there is no dissipation. For example, Joule expansion is irreversible because initially the system is not uniform. Initially, there is part of the system with gas in it, and part of the system with no gas. For dissipation to occur, there needs to be such a non uniformity. This is just the same as if in a system one section of the gas was hot, and the other cold. Then dissipation would occur; the temperature distribution would become uniform with no work being done, and this would be irreversible because you couldn't add or remove heat or change the volume to return the system to its initial state. Thus, if the system is always uniform, then the process is reversible, meaning that you can return the system to its original state by either adding or removing heat, doing work on the system, or letting the system do work. As another example, to approximate the expansion in an internal combustion engine as reversible, we would be assuming that the temperature and pressure uniformly change throughout the volume after the spark. Obviously, this is not true and there is a flame front and sometimes even engine knocking. One of the reasons that Diesel engines are able to attain higher efficiency is that the combustion is much more uniform, so less energy is lost to dissipation and the process is closer to reversible.[citation needed]

The phenomenon of irreversibility results from the fact that if a thermodynamic system, which is any system of sufficient complexity, of interacting molecules is brought from one thermodynamic state to another, the configuration or arrangement of the atoms and molecules in the system will change in a way that is not easily predictable.[5][6] Some "transformation energy" will be used as the molecules of the "working body" do work on each other when they change from one state to another. During this transformation, there will be some heat energy loss or dissipation due to intermolecular friction and collisions. This energy will not be recoverable if the process is reversed.

Many biological processes that were once thought to be reversible have been found to actually be a pairing of two irreversible processes. Whereas a single enzyme was once believed to catalyze both the forward and reverse chemical changes, research has found that two separate enzymes of similar structure are typically needed to perform what results in a pair of thermodynamically irreversible processes.[7]

Absolute versus statistical reversibility

Thermodynamics defines the statistical behaviour of large numbers of entities, whose exact behavior is given by more specific laws. While the fundamental theoretical laws of physics are all time-reversible,[8] experimentally the probability of real reversibility is low and the former state of system and surroundings is recovered only to certain extent (see: uncertainty principle). The reversibility of thermodynamics must be statistical in nature; that is, it must be merely highly unlikely, but not impossible, that a system will lower in entropy. In other words, time reversibility is fulfilled if the process happens the same way if time were to flow in reverse or the order of states in the process is reversed (the last state becomes the first and vice versa).

History

The German physicist Rudolf Clausius, in the 1850s, was the first to mathematically quantify the discovery of irreversibility in nature through his introduction of the concept of entropy. In his 1854 memoir "On a Modified Form of the Second Fundamental Theorem in the Mechanical Theory of Heat," Clausius states:

It may, moreover, happen that instead of a descending transmission of heat accompanying, in the one and the same process, the ascending transmission, another permanent change may occur which has the peculiarity of not being reversible without either becoming replaced by a new permanent change of a similar kind, or producing a descending transmission of heat.

Simply, Clausius states that it is impossible for a system to transfer heat from a cooler body to a hotter body. For example, a cup of hot coffee placed in an area of room temperature (~72 °F) will transfer heat to its surroundings and thereby cool down with the temperature of the room slightly increasing (to ~72.3 °F). However, that same initial cup of coffee will never absorb heat from its surroundings, causing it to grow even hotter, with the temperature of the room decreasing (to ~71.7 °F). Therefore, the process of the coffee cooling down is irreversible unless extra energy is added to the system.

However, a paradox arose when attempting to reconcile microanalysis of a system with observations of its macrostate. Many processes are mathematically reversible in their microstate when analyzed using classical Newtonian mechanics. This paradox clearly taints microscopic explanations of macroscopic tendency towards equilibrium, such as James Clerk Maxwell's 1860 argument that molecular collisions entail an equalization of temperatures of mixed gases.[9] From 1872 to 1875, Ludwig Boltzmann reinforced the statistical explanation of this paradox in the form of Boltzmann's entropy formula, stating that an increase of the number of possible microstates a system might be in, will increase the entropy of the system, making it less likely that the system will return to an earlier state. His formulas quantified the analysis done by William Thomson, 1st Baron Kelvin, who had argued that:[10][11]

The equations of motion in abstract dynamics are perfectly reversible; any solution of these equations remains valid when the time variable t is replaced by –t. On the other hand, physical processes are irreversible: for example, the friction of solids, conduction of heat, and diffusion. Nevertheless, the principle of dissipation of energy is compatible with a molecular theory in which each particle is subject to the laws of abstract dynamics.

Another explanation of irreversible systems was presented by French mathematician Henri Poincaré. In 1890, he published his first explanation of nonlinear dynamics, also called chaos theory. Applying chaos theory to the second law of thermodynamics, the paradox of irreversibility can be explained in the errors associated with scaling from microstates to macrostates and the degrees of freedom used when making experimental observations. Sensitivity to initial conditions relating to the system and its environment at the microstate compounds into an exhibition of irreversible characteristics within the observable, physical realm.[12]

Irreversible adiabatic process: If the cylinder is a perfect insulator, the initial top-left state cannot be reached anymore after it is changed to the one on the top-right. Instead, the state on the bottom left is assumed when going back to the original pressure because energy is converted into heat.

Examples of irreversible processes

In the physical realm, many irreversible processes are present to which the inability to achieve 100% efficiency in energy transfer can be attributed. The following is a list of spontaneous events which contribute to the irreversibility of processes.[13]

A Joule expansion is an example of classical thermodynamics, as it is easy to work out the resulting increase in entropy. It occurs where a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated; the partition between the two parts of the container is then opened, and the gas fills the whole container. The internal energy of the gas remains the same, while the volume increases. The original state cannot be recovered by simply compressing the gas to its original volume, since the internal energy will be increased by this compression. The original state can only be recovered by then cooling the re-compressed system, and thereby irreversibly heating the environment. The diagram to the right applies only if the first expansion is "free" (Joule expansion), i.e. there can be no atmospheric pressure outside the cylinder and no weight lifted.

Complex systems

The difference between reversible and irreversible events has particular explanatory value in complex systems (such as living organisms, or ecosystems). According to the biologists Humberto Maturana and Francisco Varela, living organisms are characterized by autopoiesis, which enables their continued existence. More primitive forms of self-organizing systems have been described by the physicist and chemist Ilya Prigogine. In the context of complex systems, events which lead to the end of certain self-organising processes, like death, extinction of a species or the collapse of a meteorological system can be considered as irreversible. Even if a clone with the same organizational principle (e.g. identical DNA-structure) could be developed, this would not mean that the former distinct system comes back into being. Events to which the self-organizing capacities of organisms, species or other complex systems can adapt, like minor injuries or changes in the physical environment are reversible. However, adaptation depends on import of negentropy into the organism, thereby increasing irreversible processes in its environment.[17] Ecological principles, like those of sustainability and the precautionary principle can be defined with reference to the concept of reversibility.[18][19][20][21][22][23][5][24][25]

See also

References

  1. ^ Lucia, U (1995). "Mathematical consequences and Gyarmati's principle in Rational Thermodynamics". Il Nuovo Cimento. B110 (10): 1227–1235. Bibcode:1995NCimB.110.1227L. doi:10.1007/bf02724612. S2CID 119568672.
  2. ^ Grazzini; Lucia, U. (1997). "Global analysis of dissipations due to irreversibility". Revue Gènèrale de Thermique. 36 (8): 605–609. doi:10.1016/s0035-3159(97)89987-4.
  3. ^ Lucia, U. (2008). "Probability, ergodicity, irreversibility and dynamical systems". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 464 (2093): 1089–1104. Bibcode:2008RSPSA.464.1089L. doi:10.1098/rspa.2007.0304. S2CID 34898343.
  4. ^ Grazzini G. e Lucia U., 2008 Evolution rate of thermodynamic systems, 1st International Workshop "Shape and Thermodynamics" – Florence 25 and 26 September 2008, pp. 1-7
  5. ^ a b Lucia, Umberto (October 2009). "Irreversibility, entropy and incomplete information". Physica A: Statistical Mechanics and Its Applications. 388 (19): 4025–4033. Bibcode:2009PhyA..388.4025L. doi:10.1016/j.physa.2009.06.027.
  6. ^ Lucia, U (2008). "Statistical approach of the irreversible entropy variation". Physica A: Statistical Mechanics and Its Applications. 387 (14): 3454–3460. Bibcode:2008PhyA..387.3454L. doi:10.1016/j.physa.2008.02.002.
  7. ^ Lucia U., "Irreversible Entropy in Biological Systems", EPISTEME
    Lucia, U.; Maino, G. (2003). "Thermodynamical analysis of the dynamics of tumor interaction with the host immune system". Physica A: Statistical Mechanics and Its Applications. 313 (3–4): 569–577. Bibcode:2002PhyA..313..569L. doi:10.1016/S0378-4371(02)00980-9.
  8. ^ David Albert on Time and Chance
  9. ^ Gyenis, Balazs (2017). "Maxwell and the normal distribution: A colored story of probability, independence, and tendency towards equilibrium". Studies in History and Philosophy of Modern Physics. 57: 53–65. arXiv:1702.01411. Bibcode:2017SHPMP..57...53G. doi:10.1016/j.shpsb.2017.01.001. S2CID 38272381.
  10. ^ Bishop, R. C.; Bohm, A.; Gadella, M. (2004). "Irreversibility in quantum mechanics". Discrete Dynamics in Nature and Society. 2004 (1): 75–83. CiteSeerX 10.1.1.576.7850. doi:10.1155/S1026022604401046.
  11. ^ Lebowitz, Joel L. (1995). "Microscopic reversibility and macroscopic behavior: Physical explanations and mathematical derivations". 25 Years of Non-Equilibrium Statistical Mechanics. Lecture Notes in Physics. Vol. 445. pp. 1–20. doi:10.1007/3-540-59158-3_31. ISBN 978-3-540-59158-0. S2CID 16589172.
  12. ^ "The 2nd Law of Thermodynamics".Page dated 2002-2-19. Retrieved on 2010-4-01.
  13. ^ Moran, John (2008). "Fundamentals of Engineering Thermodynamics", p. 220. John Wiley & Sons, Inc., USA. ISBN 978-0-471-78735-8.
  14. ^ Ledford, Heidi (2 December 2020). "Reversal of biological clock restores vision in old mice". Nature. 588 (7837): 209. Bibcode:2020Natur.588..209L. doi:10.1038/d41586-020-03403-0. PMID 33268879. S2CID 227259860.
  15. ^ Yang, Qingling; Cong, Luping; Wang, Yujiao; Luo, Xiaoyan; Li, Hui; Wang, Huan; Zhu, Jing; Dai, Shanjun; Jin, Haixia; Yao, Guidong; Shi, Senlin; Hsueh, Aaron J.; Sun, Yingpu (20 August 2020). "Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging". Free Radical Biology and Medicine. 156: 1–10. doi:10.1016/j.freeradbiomed.2020.05.003. PMID 32492457. S2CID 219312914.
  16. ^ Tsoukalas, Dimitris; Buga, Ana; Docea, Anca; Sarandi, Evangelia; Mitrut, Radu; Renieri, Elisavet; Spandidos, Demetrios; Rogoveanu, Ion; Cercelaru, Liliana; Niculescu, Mihaela; Tsatsakis, Aristidis; Calina, Daniela (10 September 2021). "Reversal of brain aging by targeting telomerase: A nutraceutical approach". International Journal of Molecular Medicine. 48 (5): 199. doi:10.3892/ijmm.2021.5032. PMC 8448543. PMID 34515324.
  17. ^ Longo, Giuseppe; Montévil, Maël (2012-01-01). Dinneen, Michael J.; Khoussainov, Bakhadyr; Nies, André (eds.). Computation, Physics and Beyond. Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 289–308. CiteSeerX 10.1.1.640.1835. doi:10.1007/978-3-642-27654-5_22. ISBN 9783642276538. S2CID 16929949.
  18. ^ Lucia, Umberto (1998). "Maximum principle and open systems including two-phase flows". Revue Gènèrale de Thermique. 37 (9): 813–817. doi:10.1016/s0035-3159(98)80007-x.
  19. ^ Lucia U., Irreversibility and entropy in Rational Thermodynamics, Ricerche di Matematica, L1 (2001) 77-87
  20. ^ Lucia, U.; Gervino, G. (2005). "Thermoeconomic analysis of an irreversible Stirling heat pump cycle". The European Physical Journal B. 50 (1–2): 367–369. arXiv:physics/0512182. Bibcode:2006EPJB...50..367L. doi:10.1140/epjb/e2006-00060-x. S2CID 119372773.
  21. ^ Lucia, Umberto; Maino, G. (2006). "The relativistic behaviour of the thermodynamic Lagrangian". Il Nuovo Cimento B. 121 (2): 213–216. Bibcode:2006NCimB.121..213L. doi:10.1393/ncb/i2006-10035-8.
  22. ^ Lucia, U. (2007). "Irreversible entropy variation and the problem of the trend to equilibrium". Physica A: Statistical Mechanics and Its Applications. 376: 289–292. Bibcode:2007PhyA..376..289L. doi:10.1016/j.physa.2006.10.059.
  23. ^ Lucia, U.; Gervino, G. (2009). "Hydrodynamics cavitation: from theory towards a new experimental approach". Central European Journal of Physics. 7 (3): 638–644. Bibcode:2009CEJPh...7..638L. doi:10.2478/s11534-009-0092-y. S2CID 120720503.
  24. ^ Lucia U., 2009, The thermodynamic Lagrangian, in Pandalai S.G., 2009, Recent Research Developments in Physics, Vol. 8, pp. 1-5, ISBN 978-81-7895-346-5
  25. ^ Lucia U., 2010, Maximum entropy generation and κ−exponential model, Physica A 389, pp. 4558-4563 Lucia, U. (2010). "Maximum entropy generation and κκ-exponential model". Physica A: Statistical Mechanics and Its Applications. 389 (21): 4558–4563. Bibcode:2010PhyA..389.4558L. doi:10.1016/j.physa.2010.06.047.

Read other articles:

Vittorio Emanuele IIRaja ItaliaRaja SardiniaRaja SardiniaBerkuasa23 Maret 1849 – 17 Maret 1861PendahuluCharles AlbertRaja ItaliaBerkuasa17 Maret 1861 – 9 Januari 1878PenerusUmberto IInformasi pribadiKelahiran14 Maret 1820 Istana Carignano, Torino, Kerajaan SardiniaKematian9 Januari 1878(1878-01-09) (umur 57) Roma, Kerajaan ItaliaPemakaman Pantheon, Roma, ItaliaWangsaWangsa SavoyNama lengkapVittorio Emanuele Maria Alberto Eugenio Ferdinando Tommaso di SavoiaAyahCharles AlbertIbuMaria ...

 

Tari kuda Gipang di Banjar Kuda Gipang atau Kuda Gepang merupakan salah satu kesenian Kuda Lumping yang berupa tarian berbaris menggunakan Eblek anayaman bambu berbentuk hewan kuda berkembang di lingkungan masyarakat Banjar, Kalimantan Selatan. Asal mula Bermula ketika Kerajaan Daha di Banjar dibantu oleh kesultanan Demak dalam kemelut perang perebutan tahta, yang dimana pihak Kesultan Demak memberikan syarat kepada Pangeran Samudera sebagai pewaris tahta kerajaan Daha penerus yang sah untuk ...

 

TrompetTrompetAlat musik tiup logamKlasifikasiBrass Wind Brass Aerophone Klasifikasi Hornbostel-Sachs423.233Rentangan permainan in B flat: sounds a whole tone lower Instrumen terkait Flugelhorn, Cornet, Bugle, Natural trumpet, Bass trumpet, Post horn, Roman tuba, Bucina, Shofar, Conch, Lur, Didgeridoo, Piccolo trumpet Trompet adalah alat musik tiup logam. Terletak pada jajaran tertinggi di antara tuba, eufonium, trombon, sousafon, French horn, dan Bariton. Trompet di-pitch di B♭. Trompet ha...

Mazmur 145Naskah Gulungan Mazmur 11Q5 di antara Naskah Laut Mati memuat salinan sejumlah besar mazmur Alkitab yang diperkirakan dibuat pada abad ke-2 SM.KitabKitab MazmurKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen19← Mazmur 144 Mazmur 146 → Mazmur 145 (disingkat Maz 145, Mzm 145 atau Mz 145; penomoran Septuaginta: Mazmur 144) adalah sebuah mazmur dalam bagian ke-5 Kitab Mazmur di Alkitab Ibrani dan Perjanjian Lama dalam Alkitab Kristen. Mazmur ini...

 

InstitutoNama lengkapInstituto Atlético Central CórdobaJulukanLa GloriaBerdiri8 Agustus 1918; 105 tahun lalu (1918-08-08)StadionEstadio Presidente Perón, Córdoba, Argentina(Kapasitas: 26,535)KetuaJuan BarreraManajerFrank KudelkaLigaPrimera B Nacional2012-1318thSitus webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Instituto Atlético Central Córdoba (dikenal sebagai Instituto atau Instituto de Córdoba) adalah tim sepak bola profesional asal Argentina yang be...

 

TigullioGolfo del Tigullio Stati Italia Regioni Liguria TerritorioChiavari, Lavagna, Portofino, Rapallo, Santa Margherita Ligure, Sestri Levante, Zoagli Superficie113,70 km² Abitanti100 707 (7/08/17) Densità885,73 ab./km² LingueLigure, italiano I comuni costieri che si affacciano sul golfo del Tigullio all'interno della Città metropolitana di Genova Il Tigullio è un comprensorio territoriale che fa parte della città metropolitana di Genova, in Liguria. Il t...

American politician and attorney (born 1974) Cory GardnerOfficial portrait, 2015United States Senatorfrom ColoradoIn officeJanuary 3, 2015 – January 3, 2021Preceded byMark UdallSucceeded byJohn HickenlooperChair of the National Republican Senatorial CommitteeIn officeJanuary 3, 2017 – January 3, 2019LeaderMitch McConnellPreceded byRoger WickerSucceeded byTodd YoungMember of the U.S. House of Representativesfrom Colorado's 4th districtIn officeJanuary 3, 2011&...

 

British political activist Katwala in Berlin, 2014 Sunder Katwala is a British writer and thinker of Indian and Irish heritage.[1] He is the director of British Future, a UK-based think tank,[2] and former general secretary[3] of the Fabian Society. British Future, which also addresses issues of migration and opportunity, launched[4] in January 2012. The think-tank's[5] call for the adoption of an English national anthem, backed by MPs from different UK...

 

Constituency of the National Assembly of Pakistan NA-43 Tank-cum-Dera Ismail KhanConstituencyfor the National Assembly of PakistanRegionTank District and Paniala Tehsil, Kulachi Tehsil and Dera Ismail Khan Tehsil (partly) of Dera Ismail Khan DistrictElectorate392,214[1]Current constituencyCreated2023PartyIndependentMember(s)Dawar Khan KundiCreated fromNA-37 Tank & NA-51 T.A XXII NA-43 Tank-cum-Dera Ismail Khan (این اے-43، ٹانک-کم-ڈیرہ اسماعیل خان) is a co...

Cet article est une ébauche concernant Paris. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. 17e arrtRue Léon-Cogniet La rue en août 2021. Situation Arrondissement 17e Quartier Plaine-de-Monceaux Début 17, rue Médéric Fin 14, rue Cardinet Morphologie Longueur 130 m Largeur 12 m Historique Création 1881 Dénomination 1884 Ancien nom Rue Blaise Géocodification Ville de Paris 5473 DGI 5538 G...

 

Volvo YCC Общие данные Производитель Volvo Годы производства 2004  Медиафайлы на Викискладе Volvo YCC (англ. Your Concept Car — ваш концепт-кар) — концепт-кар 2004 года, созданный как воплощение желаний женщин-водителей[источник не указан 2171 день]. Для достижения такой цели ко�...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Ye Olde Fighting Cocks in St Albans, Hertfordshire holds the Guinness World Record for the oldest pub in England. This is an index of drinking establishment-related articles. Contents A B C D E F G H I J K L M N O P Q R S T U V W X Y Z See also References External links Bartenders at the St. Charles Hotel in Toronto, circa 1911 Types of drinking establishment Alcohol-free bar Australian pub Bar Beer hall Biker bar Bloodhouse Botequim Brewpub Cantina Cider house Cigar bar Dance bar Desi pub D...

 

Canadian politician (1950–2020) Michel GauthierLeader of the OppositionIn officeFebruary 17, 1996 – March 14, 1997Preceded byGilles DuceppeSucceeded byGilles DuceppeLeader of the Bloc QuébécoisIn officeFebruary 17, 1996 – March 14, 1997Preceded byGilles Duceppe (interim)Succeeded byGilles DuceppeMember of Parliamentfor Roberval—Lac-Saint-JeanIn officeJanuary 17, 1994 – July 29, 2007Preceded byBenoit BouchardSucceeded byDenis LebelMember of the Quebec Nat...

 

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...

Elections in West Virginia Federal government Presidential elections 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 Presidential primaries Democratic 2000 2004 2008 2012 2016 2020 2024 Republican 2000 2008 2012 2016 2020 2024 U.S. Senate elections 1863 1865 1871 1877 1877 sp 1882 1883 1887 1888 1889 1892 1893 1893 sp 1895 1899 1901 1905...

 

الاتفاق الألماني السوفيتيمعلومات عامةالنوع معاهدة عدم اعتداء[1] — معاهدة سرية[1] بدء التنفيذ 23 أغسطس 1939 الموقعون يواخيم فون ريبنتروب — فياتشيسلاف مولوتوف الأطراف  ألمانيا النازية،  الاتحاد السوفيتياللغة الألمانية — الروسية تعديل - تعديل مصدري - تعديل ويكي ب�...

 

Object in the Solar System Macroscopic bodies redirects here. For macroscopic, see macroscopic scale. Euler diagram showing the types of bodies in the Solar System A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar Sy...

Badminton at the Summer OlympicsIOC Discipline CodeBDMGoverning bodyBWFEvents5 (men: 2; women: 2; mixed: 1)Games 1896 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044 2048 Note: demonstration or exhibition sport years indicated in italics Medalists Badminton had its debut as an official event on the 1992 Summer Olympics and has been contested in eight Olympiads. 74 differe...

 

Italian politician (1940–2022) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Francesco Nucara – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this message) Francesco NucaraNucara in 2008Member of the Chamber of DeputiesIn office12 July 1983 – 14 April 199...