Entropy production

Entropy production (or generation) is the amount of entropy which is produced during heat process to evaluate the efficiency of the process.

Rudolf Clausius

Short history

Entropy is produced in irreversible processes. The importance of avoiding irreversible processes (hence reducing the entropy production) was recognized as early as 1824 by Carnot.[1] In 1865 Rudolf Clausius expanded his previous work from 1854[2] on the concept of "unkompensierte Verwandlungen" (uncompensated transformations), which, in our modern nomenclature, would be called the entropy production. In the same article in which he introduced the name entropy,[3] Clausius gives the expression for the entropy production for a cyclical process in a closed system, which he denotes by N, in equation (71) which reads

Here S is the entropy in the final state and S0 the entropy in the initial state; S0-S is the entropy difference for the backwards part of the process. The integral is to be taken from the initial state to the final state, giving the entropy difference for the forwards part of the process. From the context, it is clear that N = 0 if the process is reversible and N > 0 in case of an irreversible process.

First and second law

Fig. 1 General representation of an inhomogeneous system that consists of a number of subsystems. The interaction of the system with the surroundings is through exchange of heat and other forms of energy, flow of matter, and changes of shape. The internal interactions between the various subsystems are of a similar nature and lead to entropy production.

The laws of thermodynamics system apply to well-defined systems. Fig. 1 is a general representation of a thermodynamic system. We consider systems which, in general, are inhomogeneous. Heat and mass are transferred across the boundaries (nonadiabatic, open systems), and the boundaries are moving (usually through pistons). In our formulation we assume that heat and mass transfer and volume changes take place only separately at well-defined regions of the system boundary. The expression, given here, are not the most general formulations of the first and second law. E.g. kinetic energy and potential energy terms are missing and exchange of matter by diffusion is excluded.

The rate of entropy production, denoted by , is a key element of the second law of thermodynamics for open inhomogeneous systems which reads

Here S is the entropy of the system; Tk is the temperature at which the heat enters the system at heat flow rate ; represents the entropy flow into the system at position k, due to matter flowing into the system ( are the molar flow rate and mass flow rate and Smk and sk are the molar entropy (i.e. entropy per unit amount of substance) and specific entropy (i.e. entropy per unit mass) of the matter, flowing into the system, respectively); represents the entropy production rates due to internal processes. The subscript 'i' in refers to the fact that the entropy is produced due to irreversible processes. The entropy-production rate of every process in nature is always positive or zero. This is an essential aspect of the second law.

The Σ's indicate the algebraic sum of the respective contributions if there are more heat flows, matter flows, and internal processes.

In order to demonstrate the impact of the second law, and the role of entropy production, it has to be combined with the first law which reads

with U the internal energy of the system; the enthalpy flows into the system due to the matter that flows into the system (Hmk its molar enthalpy, hk the specific enthalpy (i.e. enthalpy per unit mass)), and dVk/dt are the rates of change of the volume of the system due to a moving boundary at position k while pk is the pressure behind that boundary; P represents all other forms of power application (such as electrical).

The first and second law have been formulated in terms of time derivatives of U and S rather than in terms of total differentials dU and dS where it is tacitly assumed that dt > 0. So, the formulation in terms of time derivatives is more elegant. An even bigger advantage of this formulation is, however, that it emphasizes that heat flow rate and power are the basic thermodynamic properties and that heat and work are derived quantities being the time integrals of the heat flow rate and the power respectively.

Examples of irreversible processes

Entropy is produced in irreversible processes. Some important irreversible processes are:

  • heat flow through a thermal resistance
  • fluid flow through a flow resistance such as in the Joule expansion or the Joule–Thomson effect
  • heat transfer
  • Joule heating
  • friction between solid surfaces
  • fluid viscosity within a system.

The expression for the rate of entropy production in the first two cases will be derived in separate sections.

Fig.2 a: Schematic diagram of a heat engine. A heating power enters the engine at the high temperature TH, and is released at ambient temperature Ta. A power P is produced and the entropy production rate is .
b: Schematic diagram of a refrigerator. is the cooling power at the low temperature TL, and is released at ambient temperature. The power P is supplied and is the entropy production rate. The arrows define the positive directions of the flows of heat and power in the two cases. They are positive under normal operating conditions.

Performance of heat engines and refrigerators

Most heat engines and refrigerators are closed cyclic machines.[4] In the steady state the internal energy and the entropy of the machines after one cycle are the same as at the start of the cycle. Hence, on average, dU/dt = 0 and dS/dt = 0 since U and S are functions of state. Furthermore, they are closed systems () and the volume is fixed (dV/dt = 0). This leads to a significant simplification of the first and second law:

and

The summation is over the (two) places where heat is added or removed.

Engines

For a heat engine (Fig. 2a) the first and second law obtain the form

and

Here is the heat supplied at the high temperature TH, is the heat removed at ambient temperature Ta, and P is the power delivered by the engine. Eliminating gives

The efficiency is defined by

If the performance of the engine is at its maximum and the efficiency is equal to the Carnot efficiency

Refrigerators

For refrigerators (Fig. 2b) holds

and

Here P is the power, supplied to produce the cooling power at the low temperature TL. Eliminating now gives

The coefficient of performance of refrigerators is defined by

If the performance of the cooler is at its maximum. The COP is then given by the Carnot coefficient of performance

Power dissipation

In both cases we find a contribution which reduces the system performance. This product of ambient temperature and the (average) entropy production rate is called the dissipated power.

Equivalence with other formulations

It is interesting to investigate how the above mathematical formulation of the second law relates with other well-known formulations of the second law.

We first look at a heat engine, assuming that . In other words: the heat flow rate is completely converted into power. In this case the second law would reduce to

Since and this would result in which violates the condition that the entropy production is always positive. Hence: No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work. This is the Kelvin statement of the second law.

Now look at the case of the refrigerator and assume that the input power is zero. In other words: heat is transported from a low temperature to a high temperature without doing work on the system. The first law with P = 0 would give

and the second law then yields

or

Since and this would result in which again violates the condition that the entropy production is always positive. Hence: No process is possible whose sole result is the transfer of heat from a body of lower temperature to a body of higher temperature. This is the Clausius statement of the second law.

Expressions for the entropy production

Heat flow

In case of a heat flow rate from T1 to T2 (with ) the rate of entropy production is given by

If the heat flow is in a bar with length L, cross-sectional area A, and thermal conductivity κ, and the temperature difference is small

the entropy production rate is

Flow of mass

In case of a volume flow rate from a pressure p1 to p2

For small pressure drops and defining the flow conductance C by we get

The dependences of on T1T2 and on p1p2 are quadratic.

This is typical for expressions of the entropy production rates in general. They guarantee that the entropy production is positive.

Entropy of mixing

In this Section we will calculate the entropy of mixing when two ideal gases diffuse into each other. Consider a volume Vt divided in two volumes Va and Vb so that Vt = Va + Vb. The volume Va contains amount of substance na of an ideal gas a and Vb contains amount of substance nb of gas b. The total amount of substance is nt = na + nb. The temperature and pressure in the two volumes is the same. The entropy at the start is given by

When the division between the two gases is removed the two gases expand, comparable to a Joule–Thomson expansion. In the final state the temperature is the same as initially but the two gases now both take the volume Vt. The relation of the entropy of an amount of substance n of an ideal gas is

where CV is the molar heat capacity at constant volume and R is the molar gas constant. The system is an adiabatic closed system, so the entropy increase during the mixing of the two gases is equal to the entropy production. It is given by

As the initial and final temperature are the same, the temperature terms cancel, leaving only the volume terms. The result is

Introducing the concentration x = na/nt = Va/Vt we arrive at the well-known expression

Joule expansion

The Joule expansion is similar to the mixing described above. It takes place in an adiabatic system consisting of a gas and two rigid vessels a and b of equal volume, connected by a valve. Initially, the valve is closed. Vessel a contains the gas while the other vessel b is empty. When the valve is opened, the gas flows from vessel a into b until the pressures in the two vessels are equal. The volume, taken by the gas, is doubled while the internal energy of the system is constant (adiabatic and no work done). Assuming that the gas is ideal, the molar internal energy is given by Um = CVT. As CV is constant, constant U means constant T. The molar entropy of an ideal gas, as function of the molar volume Vm and T, is given by

The system consisting of the two vessels and the gas is closed and adiabatic, so the entropy production during the process is equal to the increase of the entropy of the gas. So, doubling the volume with T constant gives that the molar entropy produced is

Microscopic interpretation

The Joule expansion provides an opportunity to explain the entropy production in statistical mechanical (i.e., microscopic) terms. At the expansion, the volume that the gas can occupy is doubled. This means that, for every molecule there are now two possibilities: it can be placed in container a or b. If the gas has amount of substance n, the number of molecules is equal to nNA, where NA is the Avogadro constant. The number of microscopic possibilities increases by a factor of 2 per molecule due to the doubling of volume, so in total the factor is 2nNA. Using the well-known Boltzmann expression for the entropy

where k is the Boltzmann constant and Ω is the number of microscopic possibilities to realize the macroscopic state. This gives change in molar entropy of

So, in an irreversible process, the number of microscopic possibilities to realize the macroscopic state is increased by a certain factor.

Basic inequalities and stability conditions

In this section we derive the basic inequalities and stability conditions for closed systems. For closed systems the first law reduces to

The second law we write as

For adiabatic systems so dS/dt ≥ 0. In other words: the entropy of adiabatic systems cannot decrease. In equilibrium the entropy is at its maximum. Isolated systems are a special case of adiabatic systems, so this statement is also valid for isolated systems.

Now consider systems with constant temperature and volume. In most cases T is the temperature of the surroundings with which the system is in good thermal contact. Since V is constant the first law gives . Substitution in the second law, and using that T is constant, gives

With the Helmholtz free energy, defined as

we get

If P = 0 this is the mathematical formulation of the general property that the free energy of systems with fixed temperature and volume tends to a minimum. The expression can be integrated from the initial state i to the final state f resulting in

where WS is the work done by the system. If the process inside the system is completely reversible the equality sign holds. Hence the maximum work, that can be extracted from the system, is equal to the free energy of the initial state minus the free energy of the final state.

Finally we consider systems with constant temperature and pressure and take P = 0. As p is constant the first laws gives

Combining with the second law, and using that T is constant, gives

With the Gibbs free energy, defined as

we get

Homogeneous systems

In homogeneous systems the temperature and pressure are well-defined and all internal processes are reversible. Hence . As a result, the second law, multiplied by T, reduces to

With P = 0 the first law becomes

Eliminating and multiplying with dt gives

Since

with Gm the molar Gibbs free energy and μ the molar chemical potential we obtain the well-known result

Entropy production in stochastic processes

Since physical processes can be described by stochastic processes, such as Markov chains and diffusion processes, entropy production can be defined mathematically in such processes.[5]

For a continuous-time Markov chain with instantaneous probability distribution and transition rate , the instantaneous entropy production rate is

The long-time behavior of entropy production is kept after a proper lifting of the process. This approach provides a dynamic explanation for the Kelvin statement and the Clausius statement of the second law of thermodynamics.[6]

Entropy production in diffusive-reactive system has also been studied, with interesting results emerging from diffusion, cross diffusion and reactions.[7]

For a continuous-time Gauss-Markov process, a multivariate Ornstein-Uhlenbeck process is a diffusion process defined by coupled linear Langevin equations of the form

, i.e., in vector and matrix notations,

The are Gaussian white noises such that i.e.,

The stationary covariance matrix reads

We can parametrize the matrices , , and by setting

Finally, the entropy production reads [8]

A recent application of this formula is demonstrated in neuroscience, where it has been shown that entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain.[9]

See also

References

  1. ^ S. Carnot Reflexions sur la puissance motrice du feu Bachelier, Paris, 1824
  2. ^ Clausius, R. (1854). "Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheoriein". Annalen der Physik und Chemie. 93 (12): 481–506. Bibcode:1854AnP...169..481C. doi:10.1002/andp.18541691202. Retrieved 25 June 2012.. Clausius, R. (August 1856). "On a Modified Form of the Second Fundamental Theorem in the Mechanical Theory of Heat". Phil. Mag. 4. 12 (77): 81–98. doi:10.1080/14786445608642141. Retrieved 25 June 2012.
  3. ^ R. Clausius Über verschiedene für die Anwendung bequeme Formen der Hauptgleigungen der mechanische Wärmetheorie in Abhandlungen über die Anwendung bequeme Formen der Haubtgleichungen der mechanischen Wärmetheorie Ann.Phys. [2] 125, 390 (1865). This paper is translated and can be found in: The second law of thermodynamics, Edited by J. Kestin, Dowden, Hutchinson, & Ross, Inc., Stroudsburg, Pennsylvania, pp. 162–193.
  4. ^ A.T.A.M. de Waele, Basic operation of cryocoolers and related thermal machines, Review article, Journal of Low Temperature Physics, Vol.164, pp. 179–236, (2011), DOI: 10.1007/s10909-011-0373-x.
  5. ^ Jiang, Da-Quan; Qian, Min; Qian, Min-Ping (2004). Mathematical theory of nonequilibrium steady states: on the frontier of probability and dynamical systems. Berlin: Springer. ISBN 978-3-540-40957-1.
  6. ^ Wang, Yue; Qian, Hong (2020). "Mathematical Representation of Clausius' and Kelvin's Statements of the Second Law and Irreversibility". Journal of Statistical Physics. 179 (3): 808–837. arXiv:1805.09530. Bibcode:2020JSP...179..808W. doi:10.1007/s10955-020-02556-6. S2CID 254745126.
  7. ^ Mátyás, László; Gaspard, Pierre (2005). "Entropy production in diffusion-reaction systems: The reactive random Lorentz gas". Phys. Rev. E. 71 (3): 036147. arXiv:nlin/0411041. doi:10.1103/PhysRevE.71.036147. PMID 15903533.
  8. ^ Godrèche, Claude; Luck, Jean-Marc (2018). "Characterising the nonequilibrium stationary states of Ornstein–Uhlenbeck processes". J. Phys. A: Math. Theor. 52: 035002. arXiv:1807.00694. doi:10.1088/1751-8121/aaf190.
  9. ^ Gilson, Matthieu; Cofré, Rodrigo (2023). "Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain". Phys. Rev. E. 107: 024121. arXiv:2207.05197. doi:10.1103/PhysRevE.107.024121.

Further reading

Read other articles:

J.J. Madan adalah seorang pemilik bisnis teater dan sutradara film di India. Ia adalah putra ketiga dari tokoh film India Jamshedji Framji Madan yang memulai Madan Theatres Ltd. pada 1919. Setelah ayahnya meninggal pada 1923, J. J. Madan mengambil alih manajemen Teater Madan.[1] Referensi ^ Ashish Rajadhyaksha; Paul Willemen; Professor of Critical Studies Paul Willemen (10 July 2014). Madan, Jamshedji Framji. Encyclopedia of Indian Cinema. Routledge. hlm. 139. ISBN 978-1-135...

 

Chermayeff & Geismar & HavivSebelumnyaBrownjohn, Chermayeff & Geismar (1957-1959)Chermayeff & Geismar (1959-2006)JenisKemitraanIndustriIdentitas perusahaanDidirikan1957; 67 tahun lalu (1957) di New York CityPendiriRobert Brownjohn, Tom Geismar, dan Ivan ChermayeffKantorpusatNew York CityTokohkunciTom Geismar (Mitra Pendiri)Ivan Chermayeff (Mitra Pendiri, 1957-2017)Robert Brownjohn (Mitra Pendiri, 1957-1959)Sagi Haviv (Mitra)Mackey Saturday (Kepala Perancang)Situs webcghny...

 

CA32Stasiun Toyodachō豊田町駅Stasiun JR Toyodachō pada 2008Lokasi490 Tatsuno, Iwata-shi, Shizuoka-kenJepangKoordinat34°42′44″N 137°49′12″E / 34.71222°N 137.82000°E / 34.71222; 137.82000Koordinat: 34°42′44″N 137°49′12″E / 34.71222°N 137.82000°E / 34.71222; 137.82000Operator JR CentralJalur Jalur Utama TokaidoLetak248.8 kilometer dari TokyoJumlah peron2 peron sampingInformasi lainStatusMemiliki stafSitus webSitus web ...

Disambiguazione – Se stai cercando altri significati, vedi Tennessee (disambigua). Tennesseestato federato(EN) State of Tennessee (dettagli) (dettagli) Tennessee – VedutaNashville LocalizzazioneStato Stati Uniti AmministrazioneCapoluogoNashville GovernatoreBill Lee (R) dal 2019 Data di istituzione1º giugno 1796 TerritorioCoordinatedel capoluogo36°10′N 86°47′W / 36.166667°N 86.783333°W36.166667; -86.783333 (Tennessee)Coordinate: 36°10′N 86°...

 

Jamestown, Virginia, Matthew Scrivener, third colonial governor, drowned 1609 Matthew Scrivener (1580 – January 7, 1609) was an English colonist in Virginia. He served briefly as acting governor of Jamestown, but drowned while attempting to cross to nearby Hog Island in a storm in 1609. Eight other colonists were also drowned, half of them members of the governing Council, including Bartholomew Gosnold's brother Anthony. Scrivener was succeeded by Captain John Smith. Scrivener was the s...

 

Ford Motor CompanyJenisPerusahaan publik (NYSE: F)IndustriOtomotifDidirikan16 Juni 1903PendiriHenry FordKantorpusatDearborn, Michigan, Amerika SerikatWilayah operasiSeluruh duniaTokohkunciWilliam C. Ford, Jr.(Executive Chairman)Alan R. Mulally(President & CEO)ProdukMobilSuku cadang kendaraanPendapatan US$146,91 milyar (2013)[1]Laba operasi US$5,42 milyar (2013)[1]Laba bersih US$7,15 milyar (2013)[1]Total aset US$202,02 milyar (2013)[1]Total ekuitas US$26,38...

2011 Women's Hockey Champions TrophyTournament detailsHost countryNetherlandsCityAmstelveenDates25 June – 3 JuneTeams8Venue(s)Wagener StadiumFinal positionsChampions Netherlands (6th title)Runner-up ArgentinaThird place New ZealandTournament statisticsMatches played24Goals scored83 (3.46 per match)Top scorer(s) Maartje Paumen (6 goals)Best player Maartje Paumen ← 2010 (previous) (next) 2012 → The 2011 Women's Hockey Champions Trophy was the 19th edition of the H...

 

Baturaden terlihat dari bukit Lokawisata Baturraden (atau Baturraden saja) (Hanacaraka: ꦭꦺꦴꦏꦮꦶꦱꦠ​ꦧꦠꦸꦫꦢꦼꦤ꧀, Dialek Banyumasan: Lokawisata Baturraden, Mataram dan Semarangan: Lokawisata Baturradèn) merupakan suatu objek wisata yang terletak di sebelah utara kota Purwokerto tepat di lereng sebelah selatan Gunung Slamet. Baturraden karena letaknya di lereng gunung yang berada di ketinggian 750 – 900 m dpl menjadikan kawasan ini memiliki hawa yang sejuk dan cen...

 

Questa voce sull'argomento calciatori turchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Uğur Çiftçi Nazionalità  Turchia Altezza 179 cm Peso 72 kg Calcio Ruolo Difensore Squadra  Sivasspor Carriera Giovanili 2007-2010 Gençlerbirliği Squadre di club1 2010-2011 Gençlerbirliği0 (0)2011-2013 Hacettepe63 (3)2013-2018 Gençlerbirliği124 (5)2018- Sivasspor137 (...

Jules Koundé Koundé bermain untuk Sevilla pada 2020Informasi pribadiNama lengkap Jules Olivier Koundé[1]Tanggal lahir 12 November 1998 (umur 25)Tempat lahir Paris, PrancisTinggi 178 cm (5 ft 10 in)[2]Posisi bermain Bek tengahInformasi klubKlub saat ini BarcelonaKarier junior2004–2009 Fraternelle de Landiras2009–2010 Cérons2010–2013 La Brède FC2013–2018 BordeauxKarier senior*Tahun Tim Tampil (Gol)2016–2017 Bordeaux B 30 (1)2017–2019 Bordeau...

 

UK executive agency Maritime and Coastguard AgencyAbbreviationMCALegal statusExecutive agencyPurposeMaritime RegulatorLocationSouthamptonRegion served United Kingdom coastChief ExecutiveVirginia McVea[1]Parent organisationDepartment for TransportWebsitegov.uk/mca The Maritime and Coastguard Agency (MCA) is an executive agency of the United Kingdom that is responsible for implementing British and international maritime law and safety policy. It works to prevent the loss of lives at sea...

 

Voce principale: Supercoppa di Serie C. Supercoppa di Lega di Serie C 2003 Competizione Supercoppa di Lega di Serie C Sport Calcio Edizione 4ª Organizzatore Lega Professionisti Serie C Date dal 18 maggio 2003al 22 maggio 2003 Luogo Avellino, Treviso Partecipanti 2 Formula Finale A/R Impianto/i Stadio Partenio, Stadio Omobono Tenni Sito web lega-pro.com Risultati Vincitore Treviso(1º titolo) Secondo Avellino Statistiche Miglior marcatore Vincenzo Chianese Giacomo Lorenzini Gaet...

Ikan kodok Antennarius striatus Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Lophiiformes Famili: Antennariidae Genera Allenichthys Antennarius Antennatus Echinophryne Histiophryne Histrio Kuiterichthys Lophiocharon Nudiantennarius Phyllophryne Rhycherus Tathicarpus Ikan kodok, famili Antennariidae, adalah spesies pada ordo Lophiiformes. Ikan kodok dapat ditemui hampir di seluruh samudra tropis dan subtropis di seluruh dunia, dengan pengecualian di Laut T...

 

Korean pickled vegetable dish Jangajjimaneul-jong-jangajji (pickled garlic scapes and cloves)Alternative namesPickled vegetablesTypePicklesCourseBanchanPlace of originKoreaAssociated cuisineKorean cuisine  Media: Jangajji Korean nameHangul장아찌Revised RomanizationjangajjiMcCune–ReischauerchangatchiIPA[tɕaŋ.a.t͈ɕi] This article is part of a series onKorean cuisine한국 요리조선 료리 Staples Bap Bibimbap Bokkeum-bap Gukbap Juk Mieum Guksu Naengmyeon Mandu Anci...

 

Comté d'Édesse, 1135. Ceci est une liste des différents dirigeants du comté d'Édesse : 1095-1098 : Thoros, Arménien, gouverneur d’Édesse 1098-1100 : Baudouin Ier de Boulogne, adopté par le précédent, devient roi de Jérusalem en 1100 1100-1118 : Baudouin II de Bourcq, cousin du précédent, devient roi de Jérusalem en 1118 1104-1108 : régence de Richard de Salerne 1118-1119 : Galéran ou Waleran du Puiset, seigneur de Bira, cousin de Baudouin II, go...

« Eos » redirige ici. Pour les autres significations, voir Éos (homonymie) et EOS. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (février 2023). Vous pouvez améliorer la vérifiabilité en associant ces informations �...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري النرويجي الممتاز 1963 تفاصيل الموسم الدوري النرويجي الممتاز  النسخة 19  البلد النرويج  المنظ...

 

Railway station in Kolari, Finland Not to be confused with Klari railway station. KolariVR Group stationGeneral informationLocationAsematie, 95900 KolariCoordinates67°20′56″N 023°50′09″E / 67.34889°N 23.83583°E / 67.34889; 23.83583Elevation150 metres (490 ft)Owned byFinnish Transport AgencyTracks1ConstructionStructure typeground stationHistoryOpened1 December 1966 (freight traffic)[1]February 1985 (passenger traffic)ElectrifiednoPassengers80000...

Este artículo o sección tiene referencias, pero necesita más para complementar su verificabilidad. Busca fuentes: «Isabel Albertina de Sajonia-Hildburghausen» – noticias · libros · académico · imágenesEste aviso fue puesto el 15 de enero de 2014. Isabel Albertina de Sajonia-Hildburghausen Regente de Mecklemburgo-Strelitz Retrato de Isabel Albertina por Allan Ramsay (c. 1769).Reinado 1752-1753Información personalOtros títulos Princesa consorte de Mirow Princes...

 

Kolom Winogradsky awalnya Kolom Winogradsky setelah beberapa minggu Kolom Winogradsky adalah suatu miniatur ekosistem buatan untuk membiakkan mikrob yang menyerupai kondisi ekologis sebenarnya dengan menyediakan sumber bakteri jangka panjang untuk pengkayaan kultur.[1] Kolom Winogradsky adalah salah satu cara sederhana untuk mempelajari hubungan silang antara dua komponen suatu lingkungan alami di laboratorium.[1] Penemuan Kolom Winogradsky merupakan ide seorang ilmuwan Rusia ...