Hirzebruch–Riemann–Roch theorem

Hirzebruch–Riemann–Roch theorem
FieldAlgebraic geometry
First proof byFriedrich Hirzebruch
First proof in1954
GeneralizationsAtiyah–Singer index theorem
Grothendieck–Riemann–Roch theorem
ConsequencesRiemann–Roch theorem
Riemann–Roch theorem for surfaces

In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemann–Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieck–Hirzebruch–Riemann–Roch theorem proved about three years later.

Statement of Hirzebruch–Riemann–Roch theorem

The Hirzebruch–Riemann–Roch theorem applies to any holomorphic vector bundle E on a compact complex manifold X, to calculate the holomorphic Euler characteristic of E in sheaf cohomology, namely the alternating sum

of the dimensions as complex vector spaces, where n is the complex dimension of X.

Hirzebruch's theorem states that χ(X, E) is computable in terms of the Chern classes ck(E) of E, and the Todd classes of the holomorphic tangent bundle of X. These all lie in the cohomology ring of X; by use of the fundamental class (or, in other words, integration over X) we can obtain numbers from classes in The Hirzebruch formula asserts that

where the sum is taken over all relevant j (so 0 ≤ jn), using the Chern character ch(E) in cohomology. In other words, the products are formed in the cohomology ring of all the 'matching' degrees that add up to 2n. Formulated differently, it gives the equality

where is the Todd class of the tangent bundle of X.

Significant special cases are when E is a complex line bundle, and when X is an algebraic surface (Noether's formula). Weil's Riemann–Roch theorem for vector bundles on curves, and the Riemann–Roch theorem for algebraic surfaces (see below), are included in its scope. The formula also expresses in a precise way the vague notion that the Todd classes are in some sense reciprocals of the Chern Character.

Riemann Roch theorem for curves

For curves, the Hirzebruch–Riemann–Roch theorem is essentially the classical Riemann–Roch theorem. To see this, recall that for each divisor D on a curve there is an invertible sheaf O(D) (which corresponds to a line bundle) such that the linear system of D is more or less the space of sections of O(D). For curves the Todd class is and the Chern character of a sheaf O(D) is just 1+c1(O(D)), so the Hirzebruch–Riemann–Roch theorem states that

(integrated over X).

But h0(O(D)) is just l(D), the dimension of the linear system of D, and by Serre duality h1(O(D)) = h0(O(K − D)) = l(K − D) where K is the canonical divisor. Moreover, c1(O(D)) integrated over X is the degree of D, and c1(T(X)) integrated over X is the Euler class 2 − 2g of the curve X, where g is the genus. So we get the classical Riemann Roch theorem

For vector bundles V, the Chern character is rank(V) + c1(V), so we get Weil's Riemann Roch theorem for vector bundles over curves:

Riemann Roch theorem for surfaces

For surfaces, the Hirzebruch–Riemann–Roch theorem is essentially the Riemann–Roch theorem for surfaces

combined with the Noether formula.

If we want, we can use Serre duality to express h2(O(D)) as h0(O(K − D)), but unlike the case of curves there is in general no easy way to write the h1(O(D)) term in a form not involving sheaf cohomology (although in practice it often vanishes).

Asymptotic Riemann–Roch

Let D be an ample Cartier divisor on an irreducible projective variety X of dimension n. Then

More generally, if is any coherent sheaf on X then

See also

References

  • Friedrich Hirzebruch,Topological Methods in Algebraic Geometry ISBN 3-540-58663-6

Read other articles:

KisaraTokoh Engage KissKisara dalam animePenciptaAniplexPengisi suaraSaya Aizawa[1] (Jepang)Kayli Mills[2] (Inggris)BiodataSpesiesIblisJenis kelaminPerempuanStatusHidupUsia100+Tinggi Badan158 cmTanggal Lahir20 September Kisara (キサラcode: ja is deprecated ) adalah karakter fiktif yang muncul dalam proyek media campuran Engage Kiss dibuat oleh Aniplex. Dia adalah iblis kuat yang tidak diketahui usia pastinya, kecuali bahwa dia telah berusia beberapa abad. Ketika Shu Ogata p...

 

120 anggota Knesset ketujuh terpilih pada 28 Oktober 1969. Daftar anggota Anggota Aharon Becker Eliyahu Sasson Ze'ev Sherf Ya'akov Shimshon Shapira Yitzhak Ben-Aharon Mordechai Ben-Porat Mordechai Bibi Shimon Peres Mordechai Ofer Dov Zakin Pinchas Sapir Avraham Ofer Yitzhak Navon Moshe Dayan Reuven Barkat Yigal Allon Yosef Almogi Reuven Arazi Shoshana Arbeli-Almozlino Moshe Baram Ya'akov Hazan Menachem Cohen David Coren Yitzhak Coren Adiel Amorai Ari Ankorion Abba Eban Aryeh Eliav Ada Feinber...

 

Kampanye militer Qin terhadap suku-suku YueTanggal221 - 214 SMLokasiTiongkok Selatan dan Vietnam UtaraHasil Kemenangan QinPihak terlibat Kekaisaran Qin Suku-suku YueTokoh dan pemimpin Pertempuran pertama:Qín Shǐ HuángTú Suī  †Zhào TuóShǐ LùPertempuran kedua: Qín Shǐ HuángRèn XiāoZhào TuóPertempuran ketiga: Qín Shǐ HuángZhào Tuó Pertempuran pertama: Yì Xū Sòng  †Jié JùnPertempuran kedua: Jié JùnPertempuran ketiga:Shǔ Pàn  †Kekuatan Pertempuran...

Canadian TV series or program The NewcomersOriginal title screenGenreDrama, HistoricalTheme music composerHagood HardyCountry of originCanadaOriginal languageEnglishNo. of episodes7ProductionExecutive producerGordon HinchProducersRichard Nielsen and Pat FernsProduction locationVarious locations across CanadaRunning time60 minutesOriginal releaseNetworkCBCRelease20 November 1977 (1977-11-20) –19 November 1979 (1979-11-19) The Newcomers was a series of seven hour-long Canadian...

 

2023 single by Peter GabrielThe CourtSingle by Peter Gabrielfrom the album I/O Released 5 February 2023 (dark-side mix) 20 February 2023 (bright-side and in-side mixes) Studio Real World (Wiltshire) The Beehive (London) British Grove (London) Length4:20Label Real World EMI (UK/Japan) Republic (United States/Canada) Songwriter(s)Peter GabrielProducer(s)Peter GabrielPeter Gabriel singles chronology Panopticom (2023) The Court (2023) Playing for Time (2023) The Court is a song by English musicia...

 

1996 novel by Larry Niven The Ringworld Throne Ballantine front-coverAuthorLarry NivenCover artistBarclay ShawCountryUnited StatesLanguageEnglishSeriesRingworld, Known SpaceGenreScience fictionPublisherDel ReyPublication date1996Media typePrint (hardback & paperback)Pages424ISBN0-345-35861-9OCLC33818303Dewey Decimal813/.54 20LC ClassPS3564.I9 R56 1996Preceded byThe Ringworld Engineers Followed byRingworld's Children  The Ringworld Throne is a science fic...

Nigerian basketball player (born 1999) Precious AchiuwaAchiuwa with the Toronto Raptors in 2021No. 5 – New York KnicksPositionPower forward / centerLeagueNBAPersonal informationBorn (1999-09-19) September 19, 1999 (age 24)Port Harcourt, NigeriaListed height6 ft 8 in (2.03 m)Listed weight243 lb (110 kg)Career informationHigh school Our Saviour Lutheran School(The Bronx, New York) St. Benedict's Prep(Newark, New Jersey) Montverde Academy(Montverde, Florid...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (October 2023) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inli...

 

Javi Chica Javier Chica dalam pertandingan antara RCD Español dan Málaga CF di pertandingan terakhir La Liga 2008/09Informasi pribadiNama lengkap Francisco Javier Chica TorresTanggal lahir 17 Mei 1985 (umur 38)Tempat lahir Barcelona, SpanyolTinggi 176 m (577 ft 5 in)Posisi bermain BekInformasi klubKlub saat ini ValladolidNomor 2Karier junior FC Martinenc1996–2004 EspanyolKarier senior*Tahun Tim Tampil (Gol)2003–2006 Espanyol B 48 (0)2006–2011 Espanyol 117 (0)2011�...

Species of plant in the family Zingiberaceae Aframomum corrorima Dried korarima fruits, in preparation for making berbere Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Zingiberales Family: Zingiberaceae Genus: Aframomum Species: A. corrorima Binomial name Aframomum corrorima(A.Braun) P.C.M.Jansen[2] Synonyms[2][3] Amomum corr...

 

For the French Revolution militia, see National Guard (France). Republican GuardGarde républicaineEmblem of the Republican Guard[1]Active1848–presentCountry FranceBranchNational GendarmerieTypeInfantryCavalryRoleHonour GuardSecuritySize3,300 (Brigade of three regiments)Garrison/HQParisMarchDefile de la Garde RépublicaineMarch of the 1st Infantry Regiment (1st Infantry Regiment)Decorations Légion d'honneur Croix de Guerre TOEWebsiteOfficial website (in French)Military unit Th...

 

American motorcycle racer For the main character of Yo-Kai Watch, see List of Yo-kai Watch characters § Main humans (Original series). This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Nate Adams – news · new...

Category 5-equivalent Atlantic hurricane in 1944 Hurricane Seven Surface weather analysis of the storm at peak intensity on September 13Meteorological historyFormedSeptember 9, 1944 (September 9, 1944)Extratropical12:00 UTC September 15, 1944DissipatedSeptember 16, 1944 (September 16, 1944)Category 5 major hurricane1-minute sustained (SSHWS/NWS)Highest winds160 mph (260 km/h)Lowest pressure≤918 mbar (hPa); ≤27.11 inHgOverall effectsFatalit...

 

国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚  吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...

 

Halaman ini sedang dipersiapkan dan dikembangkan sehingga mungkin terjadi perubahan besar.Anda dapat membantu dalam penyuntingan halaman ini. Halaman ini terakhir disunting oleh PinkDash (Kontrib • Log) 2 hari 818 menit lalu. Jika Anda melihat halaman ini tidak disunting dalam beberapa hari, mohon hapus templat ini. Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditu...

Poverty on Native American reservations Allen, South Dakota, on the Pine Ridge Reservation, has the lowest per capita income in the country. The alcohol depo of Whiteclay, Nebraska sold over 4.9 million 12-ounce cans of beer in 2010 almost exclusively to Oglala Lakota from the reservation.[1] Part of a series onNative Americans in the United States History Paleo-Indians Lithic stage Archaic period in the Americas Formative stage Classic stage Post-Classic stage Woodland period Age of ...

 

2004 Missouri Democratic presidential primary ← 2000 February 3, 2004 (2004-02-03) 2008 → ← DENM →88 Democratic National Convention delegates (74 pledged, 14 unpledged)The number of pledged delegates received is determined by the popular vote   Candidate John Kerry John Edwards Howard Dean Home state Massachusetts North Carolina Vermont Delegate count 51 23 0 Popular vote 211,745 103,088 36,288 Percentage 50.62% 2...

 

Disambiguazione – Tévez rimanda qui. Se stai cercando altri significati, vedi Tévez (disambigua). Carlos TévezTévez in nazionale nel 2014Nazionalità Argentina Altezza173 cm Peso75 kg Calcio RuoloAllenatore (ex attaccante) Termine carriera4 giugno 2022 - giocatore CarrieraGiovanili 1992-1996 All Boys1997-2001 Boca Juniors Squadre di club1 2001-2004 Boca Juniors75 (26)2005-2006 Corinthians38 (25)[1]2006-2007 West Ham Utd26 (7)2007-2009 ...

Pour les articles homonymes, voir Crimée (homonymie) et République de Crimée. République autonome de Crimée Qırım Muhtar Cumhuriyeti (crh)Автономная Республика Крым (ru)Автономна Республіка Крим (uk) Armoiries Drapeau Administration Pays Ukraine Statut politique République autonome en exil Revendication sur la République de Crimée russe Capitale Simferopol (de jure) Kherson (siège du gouvernement en exil, capitale de fa...

 

سي إس باندوري تارغو جيو تأسس عام 1962 الملعب ستاد تودور فلاديميريسكو البلد رومانيا  الدوري دوري الدرجة الثانية الروماني 2016-2017 مركز 13 في دوري الدرجة الأولى (هبوط) المالك بلدية تارغو جيو الرئيس أوجين بيرفوليسكو الموقع الرسمي الموقع الرسمي  الطقم الأساسي الطقم الاحتياطي �...