Riemann–Roch theorem for surfaces

Riemann–Roch theorem for surfaces
FieldAlgebraic geometry
First proof byGuido Castelnuovo, Max Noether, Federigo Enriques
First proof in1886, 1894, 1896, 1897
GeneralizationsAtiyah–Singer index theorem
Grothendieck–Riemann–Roch theorem
Hirzebruch–Riemann–Roch theorem
ConsequencesRiemann–Roch theorem

In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by Castelnuovo (1896, 1897), after preliminary versions of it were found by Max Noether (1886) and Enriques (1894). The sheaf-theoretic version is due to Hirzebruch.

Statement

One form of the Riemann–Roch theorem states that if D is a divisor on a non-singular projective surface then

where χ is the holomorphic Euler characteristic, the dot . is the intersection number, and K is the canonical divisor. The constant χ(0) is the holomorphic Euler characteristic of the trivial bundle, and is equal to 1 + pa, where pa is the arithmetic genus of the surface. For comparison, the Riemann–Roch theorem for a curve states that χ(D) = χ(0) + deg(D).

Noether's formula

Noether's formula states that

where χ=χ(0) is the holomorphic Euler characteristic, c12 = (K.K) is a Chern number and the self-intersection number of the canonical class K, and e = c2 is the topological Euler characteristic. It can be used to replace the term χ(0) in the Riemann–Roch theorem with topological terms; this gives the Hirzebruch–Riemann–Roch theorem for surfaces.

Relation to the Hirzebruch–Riemann–Roch theorem

For surfaces, the Hirzebruch–Riemann–Roch theorem is essentially the Riemann–Roch theorem for surfaces combined with the Noether formula. To see this, recall that for each divisor D on a surface there is an invertible sheaf L = O(D) such that the linear system of D is more or less the space of sections of L. For surfaces the Todd class is , and the Chern character of the sheaf L is just , so the Hirzebruch–Riemann–Roch theorem states that

Fortunately this can be written in a clearer form as follows. First putting D = 0 shows that

    (Noether's formula)

For invertible sheaves (line bundles) the second Chern class vanishes. The products of second cohomology classes can be identified with intersection numbers in the Picard group, and we get a more classical version of Riemann Roch for surfaces:

If we want, we can use Serre duality to express h2(O(D)) as h0(O(K − D)), but unlike the case of curves there is in general no easy way to write the h1(O(D)) term in a form not involving sheaf cohomology (although in practice it often vanishes).

Early versions

The earliest forms of the Riemann–Roch theorem for surfaces were often stated as an inequality rather than an equality, because there was no direct geometric description of first cohomology groups. A typical example is given by Zariski (1995, p. 78), which states that

where

  • r is the dimension of the complete linear system |D| of a divisor D (so r = h0(O(D)) −1)
  • n is the virtual degree of D, given by the self-intersection number (D.D)
  • π is the virtual genus of D, equal to 1 + (D.D + K.D)/2
  • pa is the arithmetic genus χ(OF) − 1 of the surface
  • i is the index of speciality of D, equal to dim H0(O(K − D)) (which by Serre duality is the same as dim H2(O(D))).

The difference between the two sides of this inequality was called the superabundance s of the divisor D. Comparing this inequality with the sheaf-theoretic version of the Riemann–Roch theorem shows that the superabundance of D is given by s = dim H1(O(D)). The divisor D was called regular if i = s = 0 (or in other words if all higher cohomology groups of O(D) vanish) and superabundant if s > 0.

References

  • Topological Methods in Algebraic Geometry by Friedrich Hirzebruch ISBN 3-540-58663-6
  • Zariski, Oscar (1995), Algebraic surfaces, Classics in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-58658-6, MR 1336146
  • Smith, Roy. "On Classical Riemann Roch and Hirzebruch's generalization" (PDF). Department of Mathematics Boyd Research and Education Center University of Georgia.

Read other articles:

Untuk artikel tentang ibukota Kabupaten Magelang, lihat Mungkid (Kota). KajoranKecamatanWisata Negeri Sayur SukomakmurNegara IndonesiaProvinsiJawa TengahKabupatenMagelangPemerintahan • CamatSupranowo, SH MMPopulasi • Total52,871 jiwa (BPS 2.015) jiwaKode Kemendagri33.08.12 Kode BPS3308130 Luas83,41 km²Desa/kelurahan29 Kajoran (Jawa: ꦏꦗꦺꦴꦫꦤ꧀) adalah sebuah kecamatan di Kabupaten Magelang, Jawa Tengah, Indonesia. Kecamatan ini berjarak sekitar 31 ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Eduardo de Jesus BarretoEduardo de Jesus Barreto (2019) Informasi pribadiLahir(1951-08-14)14 Agustus 1951 Ermera, Timor PortugisMeninggal26 Mei 2021(2021-05-26) (umur 69) Jakarta, IndonesiaPartai politik CNRTKarier militerPihak Timor LesteMa...

 

American lawyer and statesman For other people named John Bigelow, see John Bigelow (disambiguation). John BigelowUnited States Minister to FranceIn officeApril 23, 1865 – December 23, 1866Preceded byWilliam L. DaytonSucceeded byJohn Adams DixSecretary of State of New YorkIn officeJanuary 1, 1876 – December 31, 1877Preceded byDiedrich Willers Jr.Succeeded byAllen C. Beach Personal detailsBorn(1817-11-25)November 25, 1817Malden-on-Hudson, New York, U.S.DiedDecember 19, 19...

Falfield Church, dekat A38 Falfield adalah sebuah desa, terletak dekat perbatasan utara distrik South Gloucestershire di Gloucestershire, Inggris. Dengan kode pos Wotton-under-Edge (GL12) dan sering salah didaftarkan dengan menempatkannya di distrik Stroud di Gloucestershire. Falfield terletak di sepanjang A38 road. Juga merupakan perhentian pertama dari Junction 14 di M5. Memiliki sebuah pusat kebun besar, dan dua penjara (Eastwood Park dan Leyhill) di dekatnya. Pranala luar Falfield.org.uk ...

 

For other songs, see Turning Me On. 2008 single by Keri Hilson featuring Lil WayneTurnin Me OnSingle by Keri Hilson featuring Lil Waynefrom the album In a Perfect World... ReleasedDecember 19, 2008StudioZac's Recording Studio(Atlanta, Georgia)Chalice Recording Studios(Los Angeles, California)GenreR&B[1]Length4:08LabelMosleyZone 4Songwriter(s)Keri HilsonDwayne CarterJamal JonesZachary Anson WallaceProducer(s)Polow da DonDanja (additional)Keri Hilson singles chronology Return t...

 

Cyathula adalah genus tanaman hias dan tanaman obat di famili Amaranthaceae. Genus ini tersebar di Afrika, Oseania dan Amerika. Cyathula Cyathula prostrata Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Klad Tracheophyta (tanpa takson): Klad Angiospermae Ordo: Caryophyllales Famili: Amaranthaceae Subfamili: Amaranthoideae Genus: CyathulaL. Spesies Cyathula achyranthoides (Kunth) Moq. Cyathula albida Cyathula alternifolia Cyathula angustifolia Cyathula biflora Cyathula braunii Cyathula c...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Shankarapeta Kesavapatnam – news · newspapers · books · scholar · JSTOR (February 2015) Village in telangana, IndiaShankarapatnam Kesavapatnam shankarapatnamvillageCountry IndiaStatetelangana DistrictKarimnagarTalukasShankarapatnam or Keshavapat...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

Voce principale: Supercoppa di Serie C. Supercoppa di Serie C 2018 Competizione Supercoppa di Serie C Sport Calcio Edizione 19ª Organizzatore Lega Italiana Calcio Professionistico Date dal 12 maggio 2018al 26 maggio 2018 Luogo Livorno, Padova, Lecce Partecipanti 3 Formula Triangolare Impianto/i Stadio Armando Picchi, Stadio Euganeo, Stadio Via del Mare Sito web lega-pro.com Risultati Vincitore Padova(1º titolo) Secondo Livorno Terzo Lecce Statistiche Miglior marcatore Luca Bel...

Breakdance aux Jeux olympiques Généralités Sport Break dance Création 2002 1re apparition Paris, 2024 Organisateur(s) CIO Éditions 1re en 2024 Périodicité Tous les 4 ans Pour la compétition à venir voir : Breakdance aux Jeux olympiques d'été de 2024 modifier La première apparition du breakdance aux Jeux olympiques aura lieu en 2024 aux Jeux de Paris 2024. C’est à Buenos Aires que ce sport fut présenté au public olympique lors des Jeux olympiques de la jeunesse de 2...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Rugby playerGlen JacksonBirth nameGlen Warwick JacksonDate of birth (1975-10-23) 23 October 1975 (age 48)Place of birthFeilding, New ZealandHeight5 ft 11 in (1.80 m)Weight88 kg (13 st 12 lb)SchoolOtumoetai CollegeRugby union careerPosition(s) Fly-halfSenior careerYears Team Apps (Points)2004–2010 Saracens F.C. 130 (1505)Provincial / State sidesYears Team Apps (Points) Bay of Plenty () Correct as of 29 May 2007Super RugbyYears Team Apps (Points)1999�...

Tribianocomune LocalizzazioneStato Italia Regione Lombardia Città metropolitana Milano AmministrazioneSindacoRoberto Gabriele (Insieme per Tribiano) dal 26-5-2019 TerritorioCoordinate45°25′N 9°23′E45°25′N, 9°23′E (Tribiano) Altitudine93 m s.l.m. Superficie7 km² Abitanti3 667[1] (31-12-2021) Densità523,86 ab./km² FrazioniLanzano, San Barbaziano, Zoate Comuni confinantiColturano, Dresano, Mediglia, Mulazzano (LO), Paullo Alt...

 

Native cooking style of Hyderabad, India This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (June 2016) (Learn how and when to remove this message) This article is part of the series onIndian cuisine Regional cuisines North India Awadhi Haryana Kashmiri Kumauni Mughlai Punjabi Rajasthani Uttar Pradeshi South India Chettinad Hyderabadi Karnataka Kerala M...

 

Dalam nama Korean ini, nama keluarganya adalah Oh. Oh Keo-don오거돈Press briefing, 2019–20 coronavirus outbreak in Busan Mali Kota BusanMasa jabatan1 Juli 2018 – 23 April 2020PendahuluSuh Byung-sooPenggantiByeon Sung-wan (Acting)Park Hyung-joonMenteri Kelautan dan PerikananMasa jabatan5 Januari 2005 – 26 Maret 2006PresidenRoh Moo-hyunPendahuluJang Seung-wooPenggantiKim Sung-jin Informasi pribadiLahir28 Oktober 1948 (umur 75)Busan, Korea SelatanPartai politikDem...

Athletics at the1970 Summer UniversiadeTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmen5000 mmen10,000 mmen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined eventsPentathlonwomenDecathlonmenvte The men's javelin throw event at the 1970 Summer Universiade wa...

 

Japanese association football club Football clubKyoto Sanga 京都サンガFull nameKyoto Sanga Football ClubNickname(s)Purple SangaFounded1922; 102 years ago (1922), as Kyoto Shiko Club (京都紫光クラブ)GroundSanga Stadium by Kyocera Kameoka, Kyoto Prefecture, JapanCapacity21,600OwnerKyoto Purple Sanga Co., Ltd.ChairmanMasaaki ItoManagerCho Kwi-jaeLeagueJ1 League2023J1 League, 13th of 18WebsiteClub website Home colours Away colours Current season Kyoto Purple Sanga Co...

 

Canadian novelist and video game designer Drew KarpyshynDrew Karpyshyn at Lucca Comics & Games, 2014Born (1971-07-28) July 28, 1971 (age 52)Edmonton, Alberta, CanadaOccupationNovelist, game designerLanguageEnglishGenreFantasy, science fictionSpouseJennifer KarpyshynWebsitedrewkarpyshyn.com Drew Karpyshyn (born July 28, 1971) is a Canadian video game scenario writer, scriptwriter and novelist of Ukrainian descent.[1][2] He served as a senior writer for BioWare's Star W...

Intense enjoyment, interest or approval towards something For other uses, see Enthusiasm (disambiguation). Enthusiast redirects here. For other uses, see Enthusiast (disambiguation). Men reacting enthusiastically Part of a series onEmotions Affect Classification In animals Emotional intelligence Mood Self-regulation Interpersonal Dysregulation Valence Emotions Acceptance Admiration Affection Amusement Anger Angst Anguish Annoyance Anticipation Anxiety Apathy Arousal Awe Belongingness Boredom ...

 

Hubungan Brunei Darussalam degan Qatar Brunei Qatar Brunei Darussalam menjalin hubungan diplomatik dengan Qatar pada tahun 1991. Brunei memiliki kedutaan besar di Doha, dan Qatar memiliki kedutaan besar di Bandar Seri Begawan.[1] Sejarah Hubungan kedua negara telah terjalin sejak 2 Oktober 1991.[1] Brunei membuka kedutaan besarnya di Qatar pada tahun 2001, sedangkan Qatar membuka kedutaan besarnya di Brunei pada tahun 2008.[1] Hubungan ekonomi Kedutaan Besar Qatar di ...