Riemann–Siegel theta function

In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as

for real values of t. Here the argument is chosen in such a way that a continuous function is obtained and holds, i.e., in the same way that the principal branch of the log-gamma function is defined.

It has an asymptotic expansion

which is not convergent, but whose first few terms give a good approximation for . Its Taylor-series at 0 which converges for is

where denotes the polygamma function of order . The Riemann–Siegel theta function is of interest in studying the Riemann zeta function, since it can rotate the Riemann zeta function such that it becomes the totally real valued Z function on the critical line .

Curve discussion

The Riemann–Siegel theta function is an odd real analytic function for real values of with three roots at and . It is an increasing function for , and has local extrema at , with value . It has a single inflection point at with , which is the minimum of its derivative.

Theta as a function of a complex variable

We have an infinite series expression for the log-gamma function

where γ is Euler's constant. Substituting for z and taking the imaginary part termwise gives the following series for θ(t)

For values with imaginary part between −1 and 1, the arctangent function is holomorphic, and it is easily seen that the series converges uniformly on compact sets in the region with imaginary part between −1/2 and 1/2, leading to a holomorphic function on this domain. It follows that the Z function is also holomorphic in this region, which is the critical strip.

We may use the identities

to obtain the closed-form expression

which extends our original definition to a holomorphic function of t. Since the principal branch of log Γ has a single branch cut along the negative real axis, θ(t) in this definition inherits branch cuts along the imaginary axis above i/2 and below −i/2.

Riemann–Siegel theta function in the complex plane

Gram points

The Riemann zeta function on the critical line can be written

If is a real number, then the Z function returns real values.

Hence the zeta function on the critical line will be real either at a zero, corresponding to , or when . Positive real values of where the latter case occurs are called Gram points, after J. P. Gram, and can of course also be described as the points where is an integer.

A Gram point is a solution of

These solutions are approximated by the sequence:

where is the Lambert W function.

Here are the smallest non negative Gram points

−3 0 0
−2 3.4362182261... π
−1 9.6669080561... π
0 17.8455995405... 0
1 23.1702827012... π
2 27.6701822178... 2π
3 31.7179799547... 3π
4 35.4671842971... 4π
5 38.9992099640... 5π
6 42.3635503920... 6π
7 45.5930289815... 7π
8 48.7107766217... 8π
9 51.7338428133... 9π
10 54.6752374468... 10π
11 57.5451651795... 11π
12 60.3518119691... 12π
13 63.1018679824... 13π
14 65.8008876380... 14π
15 68.4535449175... 15π

The choice of the index n is a bit crude. It is historically chosen in such a way that the index is 0 at the first value which is larger than the smallest positive zero (at imaginary part 14.13472515 ...) of the Riemann zeta function on the critical line. Notice, this -function oscillates for absolute-small real arguments and therefore is not uniquely invertible in the interval [−24,24]. Thus the odd theta-function has its symmetric Gram point with value 0 at index −3. Gram points are useful when computing the zeros of . At a Gram point

and if this is positive at two successive Gram points, must have a zero in the interval.

According to Gram’s law, the real part is usually positive while the imaginary part alternates with the Gram points, between positive and negative values at somewhat regular intervals.

The number of roots, , in the strip from 0 to T, can be found by

where is an error term which grows asymptotically like .

Only if would obey Gram’s law, then finding the number of roots in the strip simply becomes

Today we know, that in the long run, Gram's law fails for about 1/4 of all Gram-intervals to contain exactly 1 zero of the Riemann zeta-function. Gram was afraid that it may fail for larger indices (the first miss is at index 126 before the 127th zero) and thus claimed this only for not too high indices. Later Hutchinson coined the phrase Gram's law for the (false) statement that all zeroes on the critical line would be separated by Gram points.

See also

References

  • Edwards, H. M. (1974), Riemann's Zeta Function, New York: Dover Publications, ISBN 978-0-486-41740-0, MR 0466039
  • Gabcke, W. (1979), Neue Herleitung und explizierte Restabschätzung der Riemann-Siegel-Formel. Thesis, University of Göttingen. Revised version (eDiss Göttingen 2015)
  • Gram, J. P. (1903), "Note sur les zéros de la fonction ζ(s) de Riemann" (PDF), Acta Mathematica, 27 (1): 289–304, doi:10.1007/BF02421310

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Black Hole adalah nama grup musik (band) Korea beraliran MetalK (heavy metal ala Korea). Beranggotakan Joo Sang Kyun ['Bad Boy'; Vocal, Gitar], Lee Woon Jae ['Deer'; Gitar, backing vocal], Jung Byeon Hee ['Lion'; Bass, backing vocal], Lee Kwan Wook ['...

 

 

Piala FA 1893–1894Negara Inggris WalesJuara bertahanWolverhampton WanderersJuaraNotts County(gelar ke-1)Tempat keduaBolton Wanderers← 1892–1893 1894–1895 → Piala FA 1893–1894 adalah edisi ke-23 dari penyelenggaraan Piala FA, turnamen tertua dalam sepak bola di Inggris. Edisi ini dimenangkan oleh Notts County setelah mengalahkan Bolton Wanderers pada pertandingan final dengan skor 1–0. Final Artikel utama: Final Piala FA 1894 Notts County v Bolton Wanderers 31 Maret 189...

 

 

Set of essays by Thomas Paine Not to be confused with Declaration of the Rights of Man and of the Citizen (1789), A Vindication of the Rights of Men (1790) by Mary Wollstonecraft, or The Rights of Man (1940) by H. G. Wells. Rights of Man Title page from the first editionAuthorThomas PaineCountryBritainLanguageEnglishSubjectThe French RevolutionPublication date1791 Rights of Man (1791), a book by Thomas Paine, including 31 articles, posits that popular political revolution is permissible when ...

Koleksi Jalur suara Doraemon TVlagu tema karya VariousDirilis25 November 2009Genrelagu temaLabelKolombiaDoraemon Doraemon (Doraemon) (2019)String Module Error: Match not foundString Module Error: Match not found Koleksi Jalur suara Doraemon TV (2009) Koleksi lagu tema Doraemon TV adalah kumpulan lagu tema film Doraemon saat pembukaan maupun saat penutupan. Daftar Lagu Keseluruhan Nobita to Animaru Puranetto Soundtrack No.JudulDurasi1.Sayonara ni sayonara (Kaientai) 2.Yume no hito (Ta...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Ustica (disambigua). Usticacomune Ustica – VedutaPanorama di Ustica LocalizzazioneStato Italia Regione Sicilia Città metropolitana Palermo AmministrazioneSindacoSalvatore Militello (lista civica L'isola - Militello sindaco) dal 10-6-2018 (2º mandato dal 29-5-2023) TerritorioCoordinate38°43′N 13°11′E / 38.716667°N 13.183333°E38.716667; 13.183333 (Ustica)Coordinate: 38°...

 

 

Time zones of Africa: Light Blue Cape Verde Time[a] (UTC−1) Blue Greenwich Mean Time (UTC) Red Central European TimeWest Africa Time (UTC+1) Ochre Central Africa TimeEastern European TimeEgypt Standard TimeSouth African Standard Time (UTC+2) Green East Africa Time (UTC+3) Turquoise Mauritius Time[b]Seychelles Time[b] (UTC+4) a The islands of Cape Verde are to the west of the African mainland.b Mauritius and the Seychelles are to the east and north-east of Madagascar respectively. All of Ang...

American philosopher and historian (1842–1901) John FiskeBornEdmund Fiske Green(1842-03-30)March 30, 1842Hartford, Connecticut, U.S.DiedJuly 4, 1901(1901-07-04) (aged 59)Gloucester, Massachusetts, U.S.EducationHarvard UniversityEra19th-century philosophyRegionWestern philosophy Signature John Fiske (March 30, 1842 – July 4, 1901) was an American philosopher and historian. He was heavily influenced by Herbert Spencer and applied Spencer's concepts of evolution to his own writings on l...

 

 

Untuk kegunaan lain, lihat Amun (disambiguasi). AmunAmun sering digambarkan mengenakan mahkota bulu tinggiRaja para DewaNama dalam hiroglif Pusat pemujaanThebesSimbolDua bulu vertikal, kepala domba Sphinx (Criosphinx)OrangtuaTidak ada (menciptakan diri sendiri)PasanganAmunetWosretMut Amun, rekonstruksi dari bahasa Mesir Yamānu (juga diucapkan Amon, Amoun, Amen, dan kadang Imen, Yunani Ἄμμων Ammon, dan Ἅμμων Hammon), adalah nama dewa dalam mitologi Mesir yang muncul secara berangs...

 

 

ويندوز 2000الشعارمعلومات عامةنوع نظام تشغيل سمي باسم مايكروسوفت ويندوز — 2000 المنصة إكس 86 — دي إي سي ألفا — معمارية ميبس — باور بي سي النموذج المصدري حقوق التأليف والنشر محفوظة متوفر بلغات لغات متعددة المطورون مايكروسوفت موقع الويب microsoft.com… (الإنجليزية) معلومات تقنيةالعائ...

For other uses, see Livadi (disambiguation). Municipal unit in GreeceLivadi ΛιβάδιMunicipal unitLivadiLocation within the regional unit Coordinates: 40°7.6′N 22°9.45′E / 40.1267°N 22.15750°E / 40.1267; 22.15750CountryGreeceAdministrative regionThessalyRegional unitLarissaMunicipalityElassonaArea • Municipal unit158.273 km2 (61.110 sq mi) • Community140.90 km2 (54.40 sq mi)Elevation1,160 m (3,810&#...

 

 

جورج بوش الأب (بالإنجليزية: George H. W. Bush)‏  مناصب عضو مجلس النواب الأمريكي   في المنصب3 يناير 1967  – 3 يناير 1971  جون ديوي  [لغات أخرى]‏  بيل ارتشر  مندوب الولايات المتحدة الدائم لدى الأمم المتحدة (10 )   في المنصب1 مارس 1971  – 18 يناير 1973  تشارلز يوست ...

 

 

2006 single by Monica featuring Dem Franchize BoyzEverytime tha Beat DropSingle by Monica featuring Dem Franchize Boyzfrom the album The Makings of Me ReleasedJuly 24, 2006 (2006-07-24)RecordedSouthside Studios(Atlanta, Georgia)GenreR&Bsouthern hip hopsnapLength3:43LabelJSongwriter(s)Johnta AustinJermaine DupriMaurice GleatonCharles HammondRobert HillDeangelo HuntBernard LeveretteJames PhillipsGerald TillerProducer(s)Jermaine DupriLRocMonica singles chronology U Should...

Largest city in Saskatchewan, Canada This article is about the Canadian city. For other uses, see Saskatoon (disambiguation). City in Saskatchewan, CanadaSaskatoonCityCity of SaskatoonFrom top, left to right: Central Saskatoon, the Delta Bessborough hotel, the University of Saskatchewan, Downtown from the Meewasin trail, and the Broadway Bridge. FlagCoat of armsLogoNicknames: Paris of the Prairies, Toontown, S'toon, Hub City, POW City (for potash, oil and wheat), The City of Bridges, YXE...

 

 

Broadcasting of television using artificial satellites For the television channel Satellite Television launched in 1982, see Sky One § History. A number of satellite dishes Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location.[1] The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block dow...

 

 

Nobuo Kawaguchi Informasi pribadiNama lengkap Nobuo KawaguchiTanggal lahir 10 April 1975 (umur 49)Tempat lahir Prefektur Niigata, JepangPosisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)1998-2005 Júbilo Iwata 2006-2008 FC Tokyo * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Nobuo Kawaguchi (lahir 10 April 1975) adalah pemain sepak bola asal Jepang. Karier Nobuo Kawaguchi pernah bermain untuk Júbilo Iwata dan FC Tokyo. Pranala luar (Jepang) Profil dan s...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (January 2023) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources....

 

 

Village in County Westmeath in Ireland Village in Leinster, IrelandMount Temple An GhrianánVillageVillage pub and restaurantMount TempleLocation in IrelandCoordinates: 53°25′41″N 7°46′36″W / 53.427997°N 7.776694°W / 53.427997; -7.776694CountryIrelandProvinceLeinsterCountyCounty WestmeathDáil ÉireannLongford–WestmeathIrish Grid ReferenceN182383 Mount Temple (Irish: an Grianán) is a village in County Westmeath in Ireland, about 6.5 km northwest of ...

 

 

Valmacca komune di Italia Tempat Negara berdaulatItaliaDaerah di ItaliaPiemonteProvinsi di ItaliaProvinsi Alessandria NegaraItalia Ibu kotaValmacca PendudukTotal969  (2023 )GeografiLuas wilayah12,29 km² [convert: unit tak dikenal]Ketinggian97 m Berbatasan denganBozzole Breme Frassineto Po Pomaro Monferrato Sartirana Lomellina Ticineto SejarahHari liburpatronal festival (en) Santo pelindungMaria Informasi tambahanKode pos15040 Zona waktuUTC+1 UTC+2 Kode telepon0142 ID ISTAT006178 Ko...

Svante ArrheniusLahir19 Februari 1859Vik, SwedenMeninggal2 Oktober 1927ZurichAlmamaterUniversitas UppsalaPhysical Institute of the Swedish Academy of SciencesInstitusiPhysical Institute of the Swedish Academy of SciencesUniversitas Uppsalah Svante August Arrhenius (19 Februari 1859–2 Oktober 1927) ialah seorang ilmuwan Vik, Swedia dengan latar belakang petani anak dari Sanvante Gustav Arrhenius dengan Carolina Christina Thunberg. Sejak kecil ia telah memeperlihatkan kepandaiannya. Dia bela...

 

 

Granier Granier Hành chính Quốc gia Pháp Vùng Auvergne-Rhône-Alpes Tỉnh Savoie Quận Albertville Tổng Aime Xã (thị) trưởng Georges Couget(2008–2014) Thống kê Độ cao 832–2.700 m (2.730–8.858 ft) Diện tích đất1 30,31 km2 (11,70 dặm vuông Anh) Nhân khẩu2 364  (2006)  - Mật độ 12/km2 (31/sq mi) INSEE/Mã bưu chính 73126/ 73210 1 Dữ liệu địa chính Pháp loại trừ các hồ và ao...