In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-simplex.
There are 20 unique hexications for the 7-simplex, including all permutations of truncations, cantellations, runcinations, sterications, and pentellations.
The simple hexicated 7-simplex is also called an expanded 7-simplex, with only the first and last nodes ringed, is constructed by an expansion operation applied to the regular 7-simplex. The highest form, the hexipentisteriruncicantitruncated 7-simplex is more simply called a omnitruncated 7-simplex with all of the nodes ringed.
Its 56 vertices represent the root vectors of the simple Lie group A7.
Alternate names
Expanded 7-simplex
Small petated hexadecaexon (acronym: suph) (Jonathan Bowers)[1]
Coordinates
The vertices of the hexicated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,1,1,2). This construction is based on facets of the hexicated 8-orthoplex, .
A second construction in 8-space, from the center of a rectified 8-orthoplex is given by coordinate permutations of:
The vertices of the hexitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,1,2,3). This construction is based on facets of the hexitruncated 8-orthoplex, .
The vertices of the hexicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,2,2,3). This construction is based on facets of the hexicantellated 8-orthoplex, .
The vertices of the hexiruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,2,2,3). This construction is based on facets of the hexiruncinated 8-orthoplex, .
The vertices of the hexicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,2,3,4). This construction is based on facets of the hexicantitruncated 8-orthoplex, .
The vertices of the hexiruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,2,3,4). This construction is based on facets of the hexiruncitruncated 8-orthoplex, .
The vertices of the hexiruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,3,3,4). This construction is based on facets of the hexiruncicantellated 8-orthoplex, .
The vertices of the hexisteritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,2,3,4). This construction is based on facets of the hexisteritruncated 8-orthoplex, .
The vertices of the hexistericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,3,4). This construction is based on facets of the hexistericantellated 8-orthoplex, .
The vertices of the hexipentitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,2,2,3,4). This construction is based on facets of the hexipentitruncated 8-orthoplex, .
The vertices of the hexiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,4,5). This construction is based on facets of the hexiruncicantitruncated 8-orthoplex, .
The vertices of the hexistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,4,5). This construction is based on facets of the hexistericantitruncated 8-orthoplex, .
The vertices of the hexisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,3,4,5). This construction is based on facets of the hexisteriruncitruncated 8-orthoplex, .
The vertices of the hexisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,4,5). This construction is based on facets of the hexisteriruncitruncated 8-orthoplex, .
The vertices of the hexipenticantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,2,3,4,5). This construction is based on facets of the hexipenticantitruncated 8-orthoplex, .
The vertices of the hexipentiruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,3,4,4,5). This construction is based on facets of the hexipentiruncitruncated 8-orthoplex, .
The vertices of the hexisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,5,6). This construction is based on facets of the hexisteriruncicantitruncated 8-orthoplex, .
The vertices of the hexipentiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,3,4,5,6). This construction is based on facets of the hexipentiruncicantitruncated 8-orthoplex, .
The vertices of the hexipentistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,3,3,4,5,6). This construction is based on facets of the hexipentistericantitruncated 8-orthoplex, .
The omnitruncated 7-simplex is composed of 40320 (8 factorial) vertices and is the largest uniform 7-polytope in the A7 symmetry of the regular 7-simplex. It can also be called the hexipentisteriruncicantitruncated 7-simplex which is the long name for the omnitruncation for 7 dimensions, with all reflective mirrors active.
Permutohedron and related tessellation
The omnitruncated 7-simplex is the permutohedron of order 8. The omnitruncated 7-simplex is a zonotope, the Minkowski sum of eight line segments parallel to the eight lines through the origin and the eight vertices of the 7-simplex.
Like all uniform omnitruncated n-simplices, the omnitruncated 7-simplex can tessellate space by itself, in this case 7-dimensional space with three facets around each ridge. It has Coxeter-Dynkin diagram of .
Alternate names
Great petated hexadecaexon (Acronym: guph) (Jonathan Bowers)[20]
Coordinates
The vertices of the omnitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,3,4,5,6,7). This construction is based on facets of the hexipentisteriruncicantitruncated 8-orthoplex, t0,1,2,3,4,5,6{36,4}, .
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6, wiley.com
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]