Gömböc

A gömböc returning to its stable equilibrium position
A gömböc in the stable equilibrium position
4.5 m (15 ft) gömböc artistic representation in the Corvin Quarter in Budapest 2017

A gömböc (Hungarian: [ˈɡømbøt͡s]) is any member of a class of convex, three-dimensional and homogeneous bodies that are mono-monostatic, meaning that they have just one stable and one unstable point of equilibrium when resting on a flat surface.[1] The existence of this class was conjectured by the Russian mathematician Vladimir Arnold in 1995 and proven in 2006 by the Hungarian scientists Gábor Domokos and Péter Várkonyi by constructing at first a mathematical example and subsequently a physical example.

The gömböc's shape helped to explain the body structure of some tortoises and their ability to return to an equilibrium position after being placed upside down.[2][3][4] Copies of the first physically constructed example of a gömböc have been donated to institutions and museums, and the largest one was presented at the World Expo 2010 in Shanghai, China.[5]

Name

If analyzed quantitatively in terms of flatness and thickness, the discovered mono-monostatic bodies are the most sphere-like, apart from the sphere itself. Because of this, they were given the name gömböc, a diminutive form of gömb ("sphere" in Hungarian).

History

When a roly-poly toy is pushed, the height of the center of mass rises from the green line to the orange line, and the center of mass is no longer over the point of contact with the ground.

In geometry, a body with a single stable resting position is called monostatic, and the term mono-monostatic has been coined to describe a body which additionally has only one unstable point of balance (the previously known monostatic polyhedron does not qualify, as it has several unstable equilibria). A sphere weighted so that its center of mass is shifted from the geometrical center is mono-monostatic. However, it is inhomogeneous; its material density varies across its body. Another example of an inhomogeneous mono-monostatic body is the Comeback Kid, Weeble or roly-poly toy (see left figure). At equilibrium, the center of mass and the contact point are on the line perpendicular to the ground. When the toy is pushed, its center of mass rises and shifts away from that line. This produces a righting moment, which returns the toy to its equilibrium position.

The above examples of mono-monostatic objects are inhomogeneous. The question of whether it is possible to construct a three-dimensional body which is mono-monostatic but also homogeneous and convex was raised by Russian mathematician Vladimir Arnold in 1995. Being convex is essential as it is trivial to construct a mono-monostatic non-convex body: an example would be a ball with a cavity inside it. It was already well known, from a geometrical and topological generalization of the classical four-vertex theorem, that a plane curve has at least four extrema of curvature, specifically, at least two local maxima and at least two local minima, meaning that a (convex) mono-monostatic object does not exist in two dimensions. Whereas a common expectation was that a three-dimensional body should have at least four extrema, Arnold conjectured that this number could be smaller.[6][non-primary source needed]

Mathematical solution

An illustration of a gömböc

The problem was solved in 2006 by Gábor Domokos and Péter Várkonyi. Domokos met Arnold in 1995 at a major mathematics conference in Hamburg, where Arnold presented a plenary talk illustrating that most geometrical problems have four solutions or extremal points. In a personal discussion, however, Arnold questioned whether four is a requirement for mono-monostatic bodies and encouraged Domokos to seek examples with fewer equilibria.[7]

The rigorous proof of the solution can be found in references of their work.[6][non-primary source needed] The summary of the results is that the three-dimensional homogeneous convex (mono-monostatic) body, which has one stable and one unstable equilibrium point, does exist and is not unique. Their form is dissimilar to any typical representative of any other equilibrium geometrical class. They should have minimal "flatness" and, to avoid having two unstable equilibria, must also have minimal "thinness".[further explanation needed] They are the only non-degenerate[ambiguous] objects having simultaneously minimal flatness and thinness. The shape of those bodies is susceptible to small variation, outside which it is no longer mono-monostatic. For example, the first solution of Domokos and Várkonyi closely resembled a sphere, with a shape deviation of only 10−5. It was dismissed as it was tough to test experimentally.[8] The first physically produced example is less sensitive; yet it has a shape tolerance of 10−3, that is 0.1 mm for a 10 cm size.[citation needed]

Domokos developed a classification system for shapes based on their points of equilibrium by analyzing pebbles and noting their equilibrium points.[9] In one experiment, Domokos and his wife tested 2000 pebbles collected on the beaches of the Greek island of Rhodes and found not a single mono-monostatic body among them, illustrating the difficulty of finding or constructing such a body.[6][8]

A gömböc's unstable equilibrium position is obtained by rotating the figure 180° about a horizontal axis. Theoretically, it will rest there, but the smallest perturbation will bring it back to the stable point. All gömböcs have sphere-like properties. In particular, their flatness and thinness are minimal, and they are the only type of nondegenerate object with this property.[6] Domokos and Várkonyi are interested in finding a polyhedral solution with a surface consisting of a minimal number of flat planes. There is a prize[4] to anyone who finds the respective minimal numbers F, E, and V of faces, edges and vertices for such a polyhedron, which amounts to $10,000 divided by the number C = F + E + V − 2, which is called the mechanical complexity of mono-monostatic polyhedra. It has been proved that one can approximate a curvilinear mono-monostatic shape with a finite number of discrete surfaces;[10] however, they estimate that it would take thousands of planes to achieve that. By offering this prize, they hope to stimulate finding a radically different solution from their own.[4]

Relation to animals

The shape of the Indian star tortoise resembles a gömböc. This tortoise rolls easily to a right-side-up position without relying much on its limbs.
The Argentine snake-necked turtle is an example of a flat turtle, which relies on its long neck and legs to turn over when placed upside down.

The balancing properties of gömböcs are associated with the "righting response" ⁠— the ability to turn back when placed upside down⁠ ⁠— of shelled animals such as tortoises and beetles. These animals may become flipped over in a fight or predator attack, so the righting response is crucial for survival. To right themselves, relatively flat animals (such as beetles) heavily rely on momentum and thrust developed by moving their limbs and wings. However, the limbs of many dome-shaped tortoises are too short to be used for righting.

Domokos and Várkonyi spent a year measuring tortoises in the Budapest Zoo, Hungarian Museum of Natural History and various pet shops in Budapest, digitizing and analyzing their shells, and attempting to "explain" their body shapes and functions from their geometry work published by the biology journal Proceedings of the Royal Society.[11] It was then immediately popularized in several science news reports, including the science journals Nature[3] and Science.[4] The reported model can be summarized as flat shells in tortoises are advantageous for swimming and digging. However, the sharp shell edges hinder the rolling. Those tortoises usually have long legs and necks and actively use them to push the ground to return to the normal position if placed upside down. On the contrary, "rounder" tortoises easily roll on their own; those have shorter limbs and use them little when recovering from lost balance (some limb movement would always be needed because of imperfect shell shape, ground conditions, etc). Round shells also resist the crushing jaws of a predator better and are better for thermal regulation.[2][3][4]

Art

On June 7, 2012, RocketJump released "Video Game High School (VGHS) - S1: Ep. 4" to YouTube. It features the Gömböc 7:40 into the video.

In the fall of 2020, the Korzo Theatre in The Hague and the Theatre Municipal in Biarritz presented the solo dance production "Gömböc" [12] by French choreographer Antonin Comestaz.[13]

A 2021 solo exhibition of conceptual artist Ryan Gander evolved around the theme of self-righting and featured seven large gömböc shapes gradually covered by black volcanic sand.[14]

Media

For their discovery, Domokos and Várkonyi were decorated with the Knight's Cross of the Republic of Hungary.[15] The New York Times Magazine selected the gömböc as one of the 70 most interesting ideas of the year 2007.[16]

The Stamp News website[17] shows Hungary's new stamps issued on 30 April 2010, illustrating a gömböc in different positions. The stamp booklets are arranged so that the gömböc appears to come to life when the booklet is flipped. The stamps were issued in association with the gömböc on display at the World Expo 2010 (1 May to 31 October). This was also covered by the Linn's Stamp News magazine.[18]

See also

References

  1. ^ Weisstein, Eric W. "Gömböc". MathWorld. Retrieved 29 April 2024.
  2. ^ a b Summers, Adam (March 2009). "The Living Gömböc. Some tortoise shells evolved the ideal shape for staying upright". Natural History. 118 (2): 22–23.
  3. ^ a b c Ball, Philip (16 October 2007). "How tortoises turn right-side up". Nature News. doi:10.1038/news.2007.170. S2CID 178518465.
  4. ^ a b c d e Rehmeyer, Julie (5 April 2007). "Can't Knock It Down". Science News.
  5. ^ Hungary Pavilion features Gomboc, expo.shanghaidaily.com (12 July 2010)
  6. ^ a b c d Varkonyi, P.L.; Domokos, G. (2006). "Mono-monostatic bodies: the answer to Arnold's question" (PDF). The Mathematical Intelligencer. 28 (4): 34–38. doi:10.1007/bf02984701. S2CID 15720880.
  7. ^ Domokos, Gábor (2008). "My Lunch with Arnold" (PDF). The Mathematical Intelligencer. 28 (4): 31–33. doi:10.1007/BF02984700. S2CID 120684940.
  8. ^ a b Freiberger, Marianne (May 2009). "The Story of the Gömböc". Plus magazine.
  9. ^ Varkonyi, P.L.; Domokos, G. (2006). "Static Equilibria of Rigid Bodies: Dice, Pebbles, and the Poincare-Hopf Theorem". Journal of Nonlinear Science. 16 (3): 255. Bibcode:2006JNS....16..255V. doi:10.1007/s00332-005-0691-8. S2CID 17412564.
  10. ^ Lángi, Zsolt (2022). "A solution to some problems of Conway and Guy on monostable polyhedra" (PDF). Bulletin of the London Mathematical Society. 54 (2): 501–516. doi:10.1112/blms.12579. S2CID 220968924.
  11. ^ Domokos, G.; Varkonyi, P.L. (2008). "Geometry and self-righting of turtles" (free download pdf). Proc. R. Soc. B. 275 (1630): 11–17. doi:10.1098/rspb.2007.1188. PMC 2562404. PMID 17939984.
  12. ^ "" Gömböc " d'Antonin Comestaz". dansercanalhistorique. 22 September 2020.
  13. ^ "Categorie:Choreografie Antonin Comestaz". TheaterEncyclopedie. 30 January 2018.
  14. ^ "Exhibition | Ryan Gander, 'The Self Righting of All Things' at Lisson Gallery, Lisson Street, London, United Kingdom". ocula.com. 14 November 2021.
  15. ^ A gömböc for the Whipple. News, University of Cambridge (27 April 2009)
  16. ^ Per-Lee, Myra (9 December 2007) Whose Bright Idea Was That? The New York Times Magazine Ideas of 2007 Archived 11 March 2021 at the Wayback Machine. Inventorspot.com.
  17. ^ Better City – Better Life: Shanghai World Expo 2010 Archived 16 August 2017 at the Wayback Machine. Stampnews.com (22 November 2010). Retrieved on 20 October 2016.
  18. ^ McCarty, Denise (28 June 2010) "World of New Issues: Expo stamps picture Hungary's gömböc, Iceland's ice cube". Linn's Stamp News p. 14

Read other articles:

Untuk kegunaan lain, lihat My Love. My LovePoster teatrikalSutradaraLee HanProduserKim Sang-oDitulis olehShin Dong-ikPemeranKam Woo-seongChoi Kang-heeUhm Tae-woongJeong Il-wooLee Yeon-heeRyu Seung-yongLim Jeong-eunPenata musikKim Sang-heonSinematograferLee Jun-kyuPenyuntingPark Gok-jiDistributorShowboxTanggal rilis18 Desember 2007Durasi111 menitNegaraKorea SelatanBahasaKoreanPendapatankotorUS$6,660,413 My Love (Hangul: 내 사랑; RR: Nae Sarang) adalah film Korea ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Adhyaksa Dault – berita · surat kabar · buku · cendekiawan · JSTOR Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah mempe...

 

Boentaran Martoatmodjo Menteri Kesehatan Indonesia Ke-1Masa jabatan19 Agustus 1945 – 14 November 1945PresidenSoekarno PendahuluTidak ada,Jabatan baruPenggantiDarma Setiawan Informasi pribadiLahir(1896-11-01)1 November 1896Loano, Purworejo, Hindia Belanda (kini Indonesia)Meninggal4 Oktober 1979(1979-10-04) (umur 82)Jakarta, IndonesiaKebangsaanIndonesiaSuami/istriYM Aji Maryam Noerdin gelar Aji Raden SarasvatiAnak5PekerjaanMenteri Kesehatan Republik IndonesiaSunting kotak in...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Yedi Kardeş Tower Yedi Kardeş / Heft Birayan Tower (Yedi Kardeş Burcu / Birca Heft Birayan, Tower of the Seven Brothers) is a cut basalt tower in Diyarbakir. It was built in 1208 in honor of the leader of the Artukid Turkish dynasty, Melik Salih Mahmut, and designed by the architect Yahya Ibrahim Sufi.[1] It is adorned with the Artukid symbols, Koranic inscriptions and nature reliefs.[2] References ^ Diyarbakır Büyükşehir Belediyesi Kültür ve Turizm Daire Başkanlığ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Walter Dempster, Jr.Lahir20 Mei 1924Meninggal24 Juni 2005(2005-06-24) (umur 81)Nama lainWalterina Markova Walter Dempster, Jr. (20 Mei 1924 – 24 Juni 2005), yang lebih dikenal dengan nama alias Walterina Markova, adalah seora...

National Historic Site of the United States United States historic placeWilliam Howard Taft National Historic SiteU.S. National Register of Historic PlacesU.S. National Historic LandmarkU.S. National Historic SiteU.S. Historic districtContributing property Taft House in 2007Location of Taft House in OhioShow map of OhioWilliam Howard Taft National Historic Site (the United States)Show map of the United StatesInteractive map showing the William Howard Taft National Historic Site’s locationLo...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Tabletop fantasy role-playing game This article is about role-playing game. For Palm OS program, see HackMaster (software). HackMaster4th edition Player's Handbook coverDesignersJolly R. Blackburn, David Kenzer, et al.PublishersKenzer & CompanyPublication 2001 (4th Edition) 2009 (Basic) 2011 (5th Edition) GenresfantasySystemsCustom, derived from AD&D systemSpun off from the Knights of the Dinner Table comic strip HackMaster is a fantasy role-playing game produced by Kenzer & Compa...

Informasi pribadi Nama lengkap Enrique Castro González Tanggal lahir 23 September 1949 Tempat Lahir Oviedo , Spanyol Tanggal kematian 27 Februari 2018 (usia 68) Tempat meninggal Gijón , Spanyol Posisi bermain Penyerang Karier Junior - Don Bosco - Ensidesa Karier senior Taun Tim Tampil (Gol) 1967–1968 Ensidesa 22 17 1968–1980 Sporting Gijón 381 214 1980–1984 Barcelona 100 54 1984–1987 Sporting Gijón 62 17 Tim Nasional 1968 Spanyol U18 2 0 1971 Spanyol U23 2 0 1969–1972 Amatir Sp...

 

Adinia WirastiAdinia saat diwawancarai oleh Narasi pada bulan September 2020LahirAdinia Wirasti Wijayanto19 Januari 1987 (umur 37)Jakarta, IndonesiaKebangsaanIndonesiaAlmamaterAkademi Film New YorkPekerjaanPemeranmodelTahun aktif2001—sekarangSuami/istriMichael Wahr ​(m. 2023)​Anak-Keluarga Sara Wijayanto (kakak) Demian Aditya (ipar) Adinia Wirasti Wijayanto (lahir 19 Januari 1987) adalah seorang pemeran dan model Indonesia. Ia adalah adik dari pemeran...

 

Flat expanse in western North America For other uses, see Great Plains (disambiguation). Not to be confused with a southwestern portion of the Great Plains, the Llano Estacado, or another geographic region that overlaps the Great Plains, the Midwest. Great PlainsPlainBlooming rabbitbrush on the Great PlainsCole Camp, Missouri is known for tall expansive flower prairiesPrairie dog native to Great Plains, crucial keystone speciesNorth Dakota primitive lush PrairieBison, Theodore Roosevelt Natio...

NASA robotic spacecraft designed to study the Moon Pioneer 3Pioneer 3 being inspected before shipping to Cape CanaveralMission typeLunar flybyOperatorNASA \ ABMAHarvard designation1958 Theta 1[note 1]COSPAR ID1958-008A SATCAT no.111[note 1]Mission duration1 day and 14 hoursApogee102,360 kilometers (63,600 mi) Spacecraft propertiesSpacecraft typeLunar flybyManufacturerJet Propulsion LaboratoryLaunch mass5.87 kilograms (12.9 lb) Start of missionLaunch date6 December 19...

 

American boxer This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mickey Walker boxer – news · newspapers · books · scholar · JSTOR (July 2007) (Learn how and when to remove this message) Mickey WalkerBornEdward Patrick Walker(1901-07-13)July 13, 1901Elizabeth, New JerseyDiedApril 28, 1981(1981-04-28) (age...

 

This template contains a translation of Шаблон:Булева функция from ru.wikipedia. This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Infoboxes This template is within the scope of WikiProject Infoboxes, a collaborative effort to improve the coverage of Infoboxes on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tas...

Building in Lillehammer, Oppland, Norway Birkebeineren Ski StadiumFull nameBirkebeineren skistadionLocationLillehammer, NorwayCoordinates61°08′03″N 10°30′23″E / 61.134107°N 10.506368°E / 61.134107; 10.506368OwnerLillehammer OlympiaparkCapacity31,000 (cross-country)13,500 (biathlon)Record attendance100,000ConstructionBroke ground1991; 33 years ago (1991)OpenedNovember 28, 1992; 31 years ago (1992-11-28)Tenants1994 Winter O...

 

维克托·米尼巴耶夫米尼巴耶夫(右)个人资料英文名Victor Minibaev 出生 (1991-07-18) 1991年7月18日(32歲)[1] 苏联莫斯科[1]身高1.73米(5英尺8英寸)[1]体重63公斤(139英磅)[1]运动国家/地区 俄羅斯运动跳水项目10米高台 奖牌记录 男子跳水 代表 俄罗斯奥林匹克委员会 2021年 東京 雙人10米跳台 代表  俄羅斯 世界游泳錦標賽 2013年 巴塞隆納 �...

 

هينديكورت ليه رانسارت    شعار الاسم الرسمي (بالفرنسية: Hendecourt-lès-Ransart)‏    الإحداثيات 50°12′19″N 2°43′55″E / 50.205277777778°N 2.7319444444444°E / 50.205277777778; 2.7319444444444 [1]  [2] تقسيم إداري  البلد فرنسا[3]  التقسيم الأعلى باد كاليه  خصائص جغرافية  المساحة ...

Stasiun Kiaracondong B18C18 Bagian depan Stasiun Kiaracondong pintu utaraNama lainStasiun KirconLokasi* Jalan Ibrahim Adjie (pintu utara) Jalan Stasiun Kiaracondong (pintu selatan)Babakansari, Kiaracondong, Bandung, Jawa Barat 40283Indonesia Koordinat6°55′28.76″S 107°38′47.62″E / 6.9246556°S 107.6465611°E / -6.9246556; 107.6465611Ketinggian+681 mOperator Kereta Api IndonesiaDaerah Operasi II Bandung KAI Commuter Letakkm 160+124 lintas Bogor–Bandung–Ban...

 

Pour les articles homonymes, voir La Chorrera. Cet article est une ébauche concernant une localité panaméenne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. La Chorrera Héraldique Drapeau Administration Pays Panama Province Panama Démographie Population 68 896 hab. (2010) Densité 1 722 hab./km2 Géographie Coordonnées 8° 52′ 45″ nord, 79° 46′ 56″...