Polyhedron with 92 faces
3D model of a great snub icosidodecahedron
In geometry , the great snub icosidodecahedron is a nonconvex uniform polyhedron , indexed as U57 . It has 92 faces (80 triangles and 12 pentagrams ), 150 edges, and 60 vertices.[ 1] It can be represented by a Schläfli symbol sr{5 ⁄2 ,3}, and Coxeter-Dynkin diagram .
This polyhedron is the snub member of a family that includes the great icosahedron , the great stellated dodecahedron and the great icosidodecahedron .
In the book Polyhedron Models by Magnus Wenninger , the polyhedron is misnamed great inverted snub icosidodecahedron , and vice versa.
Cartesian coordinates
Let
ξ ξ -->
≈ ≈ -->
0.3990206456527105
{\displaystyle \xi \approx 0.3990206456527105}
be the positive zero of the polynomial
x
3
+
2
x
2
− − -->
ϕ ϕ -->
− − -->
2
{\displaystyle x^{3}+2x^{2}-\phi ^{-2}}
, where
ϕ ϕ -->
{\displaystyle \phi }
is the golden ratio . Let the point
p
{\displaystyle p}
be given by
p
=
(
ξ ξ -->
ϕ ϕ -->
− − -->
2
− − -->
ϕ ϕ -->
− − -->
2
ξ ξ -->
− − -->
ϕ ϕ -->
− − -->
3
+
ϕ ϕ -->
− − -->
1
ξ ξ -->
+
2
ϕ ϕ -->
− − -->
1
ξ ξ -->
2
)
{\displaystyle p={\begin{pmatrix}\xi \\\phi ^{-2}-\phi ^{-2}\xi \\-\phi ^{-3}+\phi ^{-1}\xi +2\phi ^{-1}\xi ^{2}\end{pmatrix}}}
.
Let the matrix
M
{\displaystyle M}
be given by
M
=
(
1
/
2
− − -->
ϕ ϕ -->
/
2
1
/
(
2
ϕ ϕ -->
)
ϕ ϕ -->
/
2
1
/
(
2
ϕ ϕ -->
)
− − -->
1
/
2
1
/
(
2
ϕ ϕ -->
)
1
/
2
ϕ ϕ -->
/
2
)
{\displaystyle M={\begin{pmatrix}1/2&-\phi /2&1/(2\phi )\\\phi /2&1/(2\phi )&-1/2\\1/(2\phi )&1/2&\phi /2\end{pmatrix}}}
.
M
{\displaystyle M}
is the rotation around the axis
(
1
,
0
,
ϕ ϕ -->
)
{\displaystyle (1,0,\phi )}
by an angle of
2
π π -->
/
5
{\displaystyle 2\pi /5}
, counterclockwise. Let the linear transformations
T
0
,
… … -->
,
T
11
{\displaystyle T_{0},\ldots ,T_{11}}
be the transformations which send a point
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
to the even permutations of
(
± ± -->
x
,
± ± -->
y
,
± ± -->
z
)
{\displaystyle (\pm x,\pm y,\pm z)}
with an even number of minus signs.
The transformations
T
i
{\displaystyle T_{i}}
constitute the group of rotational symmetries of a regular tetrahedron .
The transformations
T
i
M
j
{\displaystyle T_{i}M^{j}}
(
i
=
0
,
… … -->
,
11
{\displaystyle (i=0,\ldots ,11}
,
j
=
0
,
… … -->
,
4
)
{\displaystyle j=0,\ldots ,4)}
constitute the group of rotational symmetries of a regular icosahedron .
Then the 60 points
T
i
M
j
p
{\displaystyle T_{i}M^{j}p}
are the vertices of a great snub icosahedron. The edge length equals
2
ξ ξ -->
1
− − -->
ξ ξ -->
{\displaystyle 2\xi {\sqrt {1-\xi }}}
, the circumradius equals
ξ ξ -->
2
− − -->
ξ ξ -->
{\displaystyle \xi {\sqrt {2-\xi }}}
, and the midradius equals
ξ ξ -->
{\displaystyle \xi }
.
For a great snub icosidodecahedron whose edge length is 1,
the circumradius is
R
=
1
2
2
− − -->
ξ ξ -->
1
− − -->
ξ ξ -->
≈ ≈ -->
0.8160806747999234
{\displaystyle R={\frac {1}{2}}{\sqrt {\frac {2-\xi }{1-\xi }}}\approx 0.8160806747999234}
Its midradius is
r
=
1
2
1
1
− − -->
ξ ξ -->
≈ ≈ -->
0.6449710596467862
{\displaystyle r={\frac {1}{2}}{\sqrt {\frac {1}{1-\xi }}}\approx 0.6449710596467862}
The four positive real roots of the sextic in R 2 ,
4096
R
12
− − -->
27648
R
10
+
47104
R
8
− − -->
35776
R
6
+
13872
R
4
− − -->
2696
R
2
+
209
=
0
{\displaystyle 4096R^{12}-27648R^{10}+47104R^{8}-35776R^{6}+13872R^{4}-2696R^{2}+209=0}
are, in order, the circumradii of the great retrosnub icosidodecahedron (U74 ), great snub icosidodecahedron (U57 ), great inverted snub icosidodecahedron (U69 ) and snub dodecahedron (U29 ).
Great pentagonal hexecontahedron
3D model of a great pentagonal hexecontahedron
The great pentagonal hexecontahedron (or great petaloid ditriacontahedron ) is a nonconvex isohedral polyhedron and dual to the uniform great snub icosidodecahedron . It has 60 intersecting irregular pentagonal faces, 120 edges, and 92 vertices.
Proportions
Denote the golden ratio by
ϕ ϕ -->
{\displaystyle \phi }
. Let
ξ ξ -->
≈ ≈ -->
− − -->
0.199
510
322
83
{\displaystyle \xi \approx -0.199\,510\,322\,83}
be the negative zero of the polynomial
P
=
8
x
3
− − -->
8
x
2
+
ϕ ϕ -->
− − -->
2
{\displaystyle P=8x^{3}-8x^{2}+\phi ^{-2}}
. Then each pentagonal face has four equal angles of
arccos
-->
(
ξ ξ -->
)
≈ ≈ -->
101.508
325
512
64
∘ ∘ -->
{\displaystyle \arccos(\xi )\approx 101.508\,325\,512\,64^{\circ }}
and one angle of
arccos
-->
(
− − -->
ϕ ϕ -->
− − -->
1
+
ϕ ϕ -->
− − -->
2
ξ ξ -->
)
≈ ≈ -->
133.966
697
949
42
∘ ∘ -->
{\displaystyle \arccos(-\phi ^{-1}+\phi ^{-2}\xi )\approx 133.966\,697\,949\,42^{\circ }}
. Each face has three long and two short edges. The ratio
l
{\displaystyle l}
between the lengths of the long and the short edges is given by
l
=
2
− − -->
4
ξ ξ -->
2
1
− − -->
2
ξ ξ -->
≈ ≈ -->
1.315
765
089
00
{\displaystyle l={\frac {2-4\xi ^{2}}{1-2\xi }}\approx 1.315\,765\,089\,00}
.
The dihedral angle equals
arccos
-->
(
ξ ξ -->
/
(
ξ ξ -->
+
1
)
)
≈ ≈ -->
104.432
268
611
86
∘ ∘ -->
{\displaystyle \arccos(\xi /(\xi +1))\approx 104.432\,268\,611\,86^{\circ }}
. Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial
P
{\displaystyle P}
play a similar role in the description of the great inverted pentagonal hexecontahedron and the great pentagrammic hexecontahedron .
See also
References
External links
Kepler-Poinsot polyhedra (nonconvex regular polyhedra)Uniform truncations of Kepler-Poinsot polyhedra Nonconvex uniform hemipolyhedra Duals of nonconvex uniform polyhedra Duals of nonconvex uniform polyhedra with infinite stellations