Uniform star polyhedron with 84 faces
3D model of a snub dodecadodecahedron
In geometry , the snub dodecadodecahedron is a nonconvex uniform polyhedron , indexed as U40 . It has 84 faces (60 triangles , 12 pentagons , and 12 pentagrams ), 150 edges, and 60 vertices.[ 1] It is given a Schläfli symbol sr{5 ⁄2 ,5}, as a snub great dodecahedron .
Cartesian coordinates
Let
ξ ξ -->
≈ ≈ -->
1.2223809502469911
{\displaystyle \xi \approx 1.2223809502469911}
be the smallest real zero of the polynomial
P
=
2
x
4
− − -->
5
x
3
+
3
x
+
1
{\displaystyle P=2x^{4}-5x^{3}+3x+1}
. Denote by
ϕ ϕ -->
{\displaystyle \phi }
the golden ratio . Let the point
p
{\displaystyle p}
be given by
p
=
(
ϕ ϕ -->
− − -->
2
ξ ξ -->
2
− − -->
ϕ ϕ -->
− − -->
2
ξ ξ -->
+
ϕ ϕ -->
− − -->
1
− − -->
ϕ ϕ -->
2
ξ ξ -->
2
+
ϕ ϕ -->
2
ξ ξ -->
+
ϕ ϕ -->
ξ ξ -->
2
+
ξ ξ -->
)
{\displaystyle p={\begin{pmatrix}\phi ^{-2}\xi ^{2}-\phi ^{-2}\xi +\phi ^{-1}\\-\phi ^{2}\xi ^{2}+\phi ^{2}\xi +\phi \\\xi ^{2}+\xi \end{pmatrix}}}
.
Let the matrix
M
{\displaystyle M}
be given by
M
=
(
1
/
2
− − -->
ϕ ϕ -->
/
2
1
/
(
2
ϕ ϕ -->
)
ϕ ϕ -->
/
2
1
/
(
2
ϕ ϕ -->
)
− − -->
1
/
2
1
/
(
2
ϕ ϕ -->
)
1
/
2
ϕ ϕ -->
/
2
)
{\displaystyle M={\begin{pmatrix}1/2&-\phi /2&1/(2\phi )\\\phi /2&1/(2\phi )&-1/2\\1/(2\phi )&1/2&\phi /2\end{pmatrix}}}
.
M
{\displaystyle M}
is the rotation around the axis
(
1
,
0
,
ϕ ϕ -->
)
{\displaystyle (1,0,\phi )}
by an angle of
2
π π -->
/
5
{\displaystyle 2\pi /5}
, counterclockwise. Let the linear transformations
T
0
,
… … -->
,
T
11
{\displaystyle T_{0},\ldots ,T_{11}}
be the transformations which send a point
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
to the even permutations of
(
± ± -->
x
,
± ± -->
y
,
± ± -->
z
)
{\displaystyle (\pm x,\pm y,\pm z)}
with an even number of minus signs.
The transformations
T
i
{\displaystyle T_{i}}
constitute the group of rotational symmetries of a regular tetrahedron .
The transformations
T
i
M
j
{\displaystyle T_{i}M^{j}}
(
i
=
0
,
… … -->
,
11
{\displaystyle (i=0,\ldots ,11}
,
j
=
0
,
… … -->
,
4
)
{\displaystyle j=0,\ldots ,4)}
constitute the group of rotational symmetries of a regular icosahedron .
Then the 60 points
T
i
M
j
p
{\displaystyle T_{i}M^{j}p}
are the vertices of a snub dodecadodecahedron. The edge length equals
2
(
ξ ξ -->
+
1
)
ξ ξ -->
2
− − -->
ξ ξ -->
{\displaystyle 2(\xi +1){\sqrt {\xi ^{2}-\xi }}}
, the circumradius equals
(
ξ ξ -->
+
1
)
2
ξ ξ -->
2
− − -->
ξ ξ -->
{\displaystyle (\xi +1){\sqrt {2\xi ^{2}-\xi }}}
, and the midradius equals
ξ ξ -->
2
+
ξ ξ -->
{\displaystyle \xi ^{2}+\xi }
.
For a great snub icosidodecahedron whose edge length is 1,
the circumradius is
R
=
1
2
2
ξ ξ -->
− − -->
1
ξ ξ -->
− − -->
1
≈ ≈ -->
1.2744398820380232
{\displaystyle R={\frac {1}{2}}{\sqrt {\frac {2\xi -1}{\xi -1}}}\approx 1.2744398820380232}
Its midradius is
r
=
1
2
ξ ξ -->
ξ ξ -->
− − -->
1
≈ ≈ -->
1.1722614951149297
{\displaystyle r={\frac {1}{2}}{\sqrt {\frac {\xi }{\xi -1}}}\approx 1.1722614951149297}
The other real root of P plays a similar role in the description of the Inverted snub dodecadodecahedron
3D model of a medial pentagonal hexecontahedron
The medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron . It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.
See also
References
External links
Kepler-Poinsot polyhedra (nonconvex regular polyhedra)Uniform truncations of Kepler-Poinsot polyhedra Nonconvex uniform hemipolyhedra Duals of nonconvex uniform polyhedra Duals of nonconvex uniform polyhedra with infinite stellations