The small stellated dodecahedron can be constructed analogously to the pentagram, its two-dimensional analogue, via the extension of the edges (1-faces) of the core polytope until a point is reached where they intersect.
Properties
If the pentagrammic faces are considered as 5 triangular faces, it shares the same surface topology as the pentakis dodecahedron, but with much taller isosceles triangle faces, with the height of the pentagonal pyramids adjusted so that the five triangles in the pentagram become coplanar. The critical angle is atan(2) above the dodecahedron face.
If we regard it as having 12 pentagrams as faces, with these pentagrams meeting at 30 edges and 12 vertices, we can compute its genus using Euler's formula
and conclude that the small stellated dodecahedron has genus 4. This observation, made by Louis Poinsot, was initially confusing, but Felix Klein showed in 1877 that the small stellated dodecahedron could be seen as a branched covering of the Riemann sphere by a Riemann surface of genus 4, with branch points at the center of each pentagram. This Riemann surface, called Bring's curve, has the greatest number of symmetries of any Riemann surface of genus 4: the symmetric group acts as automorphisms[1]
There are four related uniform polyhedra, constructed as degrees of truncation. The dual is a great dodecahedron. The dodecadodecahedron is a rectification, where edges are truncated down to points.
The truncated small stellated dodecahedron can be considered a degenerate uniform polyhedron since edges and vertices coincide, but it is included for completeness. Visually, it looks like a regular dodecahedron on the surface, but it has 24 faces in overlapping pairs. The spikes are truncated until they reach the plane of the pentagram beneath them. The 24 faces are 12 pentagons from the truncated vertices and 12 decagons taking the form of doubly-wound pentagons overlapping the first 12 pentagons. The latter faces are formed by truncating the original pentagrams. When an {n⁄d}-gon is truncated, it becomes a {2n⁄d}-gon. For example, a truncated pentagon {5⁄1} becomes a decagon {10⁄1}, so truncating a pentagram {5⁄2} becomes a doubly-wound pentagon {10⁄2} (the common factor between 10 and 2 mean we visit each vertex twice to complete the polygon).